
RPBASIC-52 PROGRAMMING GUIDE

i

COPYRIGHT

Cop yright 1 996 - R emo te Proc essing Corp oration .

All rights reserved.

The software described in this manual is furnished

under license.

The contents of this manual and the specifications

herein may change without notice.

Remote Processing Corportation

7975 E. Harvard Avenue

Denver, Co 80231

Phone: 303 690 1588

Fax: 303 690 1875

email: info@remotep.com

Internet: www.remotep.com

Document order # 1084

Rev ision 1 .4

PRODUCT SUPPORT

If you have a question about RPBASIC-52 and

cannot find the answer in this manual, call us at the

number listed below during norm al business hours.

When you call, please have the following at hand:

Your RPBA SIC-52 programming guide

Your card hardware manual

A description of the problem

RPBASIC-52 PROGRAMMING GUIDE

ii

TABLE OF CONTENTS
PREFACE . 1

MANUAL CONVENTIONS 1

Symbols and Terminology 1

Basic Interprete rs 2

Comm ands . 2

Functions . 2

Line Nu mbers . 2

Operators . 2

Tasking S tatements 2

Expressions . 2

WRITING AND EDITING PROGRAMS . 2

Uppercase/Low ercase 4

Variables an d Constan ts 4

Subroutines . 5

Pass ing Var iables Between Programs . . 5

Addresses . 5

Arrays . 5

Strings . 5

OPERATING MODES 6

Command and Run Modes 6

Autorunning Programs 6

Stopping Program Execution 6

X-ON and X-O ff Flow Control 6

STORING PROGRAMS 6

HARDWARE AND SOFTWARE

INTERRUPTS . 7

MULTITASKING CONSTRUCTS 8

COUN T Multitasking 8

Serial Communication Multitasking . . . 8

ON LINE Multitasking 12

ON CO UNT M ultitasking 12

Assembly Language Interface 12

Assembly language development

environment 12

OPERATORS . 13

ARITHMETIC OPERATORS 13

OBSOLETE and MODIFIED

COMMANDS 13

COMM AND GROU PS 14

COMMANDS

ABS . 1

AIN . 2

ASC . 3

ATN . 4

BLOAD . 5

BSAVE . 6

CALL . 8

CARD$. 9

CBY . 11

CHR . 12

CLEAR . 13

CLEAR S . 13

CLEAR COM . 15

CLEAR DISPLAY 16

CLEAR TICK . 17

CLEAR KEYPAD 17

COM . 18

COM$. 19

CONT . 20

COS . 21

CR . 22

COU NT (statem ent) 23

COUN T (function) 24

DATA . 25

DATE (function) . 26

DAT E (stateme nt) 27

DBY . 28

DIM . 29

DISPLAY . 30

DO-U NTIL . 33

DO-WHILE . 34

END . 35

EXECUTE . 36

EXP . 37

FOR-TO-STEP-NEXT 38

FREE . 40

GET . 41

GOSUB . 42

GOTO . 43

IDLE . 44

IF THEN ELSE . 45

INPUT . 46

INT . 47

KEYPAD . 48

LD@ . 49

LEN . 50

LINE (Function) . 51

LINE# (Function) . 52

LINEB (Function) 53

LINE (S tatement) . 54

LINE# (Statemen t) 55

LINEB (Statemen t) 56

LIST . 57

LIST# . 58

LOAD . 59

LOG . 60

MTOP . 61

NEW . 62

NULL . 63

ON COM$. 64

ON COUNT . 65

ONERR . 67

ON GOSUB . 68

ON GOTO . 69

ONITR . 70

ON KEYPAD . 72

RPBASIC-52 PROGRAMMING GUIDE

iii

ON LINE . 73

ONTICK . 75

PEEKB . 76

PEEKF . 77

PEEKW . 78

PEEK$. 79

PI . 80

POKEB . 81

POKEF . 82

POKEW . 83

POKE$. 84

POP . 85

PH0. 86

PH1. 86

PRINT . 87

PRINT #, . 87

P. 87

? . 87

PUSH . 88

P W M . 89

READ . 90

REM . 91

RESTORE . 92

RETI . 93

RETURN . 94

RND . 95

SAVE . 96

SGN . 97

SIN . 98

SPC . 99

STOP . 100

STR . 101

STRING . 105

SQR . 106

ST@ . 107

TAB . 108

TAN . 109

TICK . 110

TIME (function) . 111

TIME (comm and) 112

UI0 . 113

UI1 . 113

UO0 . 114

UO1 . 114

USING . 115

U. 115

WDOG . 116

XBY . 117

CONFIG COMMANDS 118

CON FIG AIN . 118

CONFIG BAUD 119

CONFIG DISPLAY 120

CONFIG LINE . 121

APPENDIX A - Network example program 1

APPENDIX B - Modem example program 1

APPENDIX C- ERROR MESSAGES 1

A-STACK . 1

ARITH. UNDERFLOW 1

ARITH. OVERFLOW 2

ARRAY SIZE . 2

BAD ARGUMENT 2

BAD SYNTAX . 2

C-STACK . 2

CAN'T CONTINUE 2

DIVIDE BY ZERO 2

I-STACK . 3

MEMORY ALLOCATION 3

NO DATA . 3

APPEND IX D - Data storage 1

STRING STORAGE 1

VARIABLE STORAGE 1

FLOATING-POINT FORMAT 1

APPE NDIX E - Software revision history 1

RPBASIC-52 PROGRAMMING GUIDE

1-1

PREFACE

This programming guide is for Remote Processing

controllers using RPBASIC-52 language. It was

derived from Intel MCS-51 BASIC, V1.1. Several

command extensions and features have been added

to effectively speed up command execution.

M Buffered serial p orts. Received characters are

buffered to 256 ch aracters. PRIN T strings are

put into a 256 character buffer, making it much

faster.

M Multi- tasking constructs such as ON LINE, ON

COM, ON C OUNT, and ON KE YPAD. Lines

and keypad are monitored at assembly language

speed on every 5 ms tick time. This speeds up

program execution because the main program

no longer has to monitor these points.

M Softw are co mm ands d irectly suppo rt hardw are.

DA TE a nd TIM E wo rk with the rea l time clock .

AIN reads a voltage while AOT outputs one.

Some cards do not have all hardware features so do

not support all of the commands. Cards supported or

exceptions are l is ted with each command. In some

cases you must refer to your hardware manual for

exact ranges.

A few original BASIC-52 commands have been

removed. These commands w ere oriented around

specific registers in the 8 052 chip or a spe cific

design. For example, the PROG command assumed

code is stored in an EPROM. Remote Processing

cards use a flash EPROM which uses a new

programming algorithm. The PROG command was

replaced with SAVE.

MANUAL CONVENTIONS

Information appearing on your screen is shown in a

different type.

Example:
RPBASIC-52 V1.0
Copyright Remote Processing (1995)
Bytes free: 27434

Symbols and Terminology

<xxx> Paired angle brackets are used to indicate a

specific key on your keyboard. For

example, <esc> means the escape key.

expr Term m eaning a num ber, simple

variable, or mathematical expression

involving variables and numbers. The

following are valid expr:

45.3

B

CYCLE

B*45

C*D+54

INT(D)

expr can be anoth er func tion.

Com plexity of expr is limited by

available stack mem ory. Usually this is

7 levels of parentheses.

For cla rity, expr may be another name

such as position, channel, and so on.

italic Italicized variables require an

expression or value. For example:

AIN(channel)

KEYPAD(function)

Ellipsis (...) follow an instruction w hich optionally

accept more data.

DATA data[,data][,data] ...

READ variable[,variable] ...

Optional portion s of an instruction are e nclosed in

brackets []:

DISPLAY option[,option][,option]

RPBASIC-52 PROGRAMMING GUIDE

1-2

Basic Interpreters

Ther e are se veral ty pes an d leve ls of inte rpreter s. A

slow, very basic type of interpreter figures out what

each com man d is sup posed to do du ring run time . A

token-based interpreter, such as this basic, is much

faster. This type exa mines ea ch program line as it is

typed in, figures out w hat it should do, and c onverts

it to a stri ng of B asic to kens m ixed w ith text . A

token is a single character that represents a

command. For example, an ASC II value of 89H

repres ents th e PR INT com man d.

After a line is p rocess ed, it is st ored in mem ory.

When you type the RUN command, each program

line is scanned. A token causes a branch to an

assembly language routine which carries out the

required action.

ELEMENTS OF A BASIC PROGRAM

Commands

Com man ds dire ct or pe rform an out put ac tion.

Exam ples ar e PR INT , SAV E, PO KE, a nd LO AD .

Comm ands do not return a value used for

computation.

Functions

Func tions re turn a v alue u sed for c omp utation .

Exam ples ar e AIN , PEE K, SIN , and C OM $.

Functions do not cause a ch ange in an ou tput.

Line Numbers

Progra m line s begin with a uniqu e line n umb er.

Each line nu mber m ay contain on e or more B asic

statemen ts separated by a colon. Line num bers are

in the range of 1 - 65535.

Operators

Ope rators a ct on o r conv ert num eric or s tring da ta.

These include arithmetic (+,-,*, and /), natural

logarithmic (base "e"), trig (SIN, COS), relational

(>, <, or <>), logical (.AND., .OR., .XOR.), and

string (ASC , STR) func tions. Special ope rators

control the hardware-specific features of RPBASIC-

52 such as interrupts, timers, counters, and direct

read/write of I/O ports.

Tasking Statements

Tasking statements define a condition and execution

location wh en a condition is m et. Statemen ts

include ON COM $, ON LINE, ON COUN T, and

ONITR . Programs executed as a result of these

statemen ts are treated as subro utines. The only

difference between a tasking routine and one called

by a GOSUB is the tasking can be called at any

time.

Expressions

An expression is a comb ination of instructions,

operators, data (constants, arrays or strings) and

variables wh ich, when ev aluated by B asic, is

equivalent to a sin gle nume rical value. Ma ny Basic

comm ands accep t expressions as w ell as explicit

data. Expressions which are used by commands and

functions are also called arguments.

WRITING AND EDITING PROGRAMS

Program development takes place on your PC using

your word processor or the RPC card . Programs

from your PC are downloaded using a serial

communication program.

Each progra m line can co ntain a t mos t 79 ch aracte rs.

Program lines can be entered in any sequence.

RPBA SIC-52 properly orders line numbers.

Multiple statements on a single line are allowed

when statements are separated by colon (:) and do

not ex ceed a total o f 79 cha racters per pro gram line.

Ending a program line with a colon may cause a

program to hang.

There are two ways to write Basic programs. The

first way is to directly type in the program to the

card. All standard Remote Processing cards have a

mea ns of sto ring pro gram s to a fla sh type EPR OM .

The second way is use a text editor and download

the resulting file to the system. Just be sure to save

files in DOS text format.

Downloading programs means transferring them

from y our PC (or M AC or term inal) to the ca rd.

Uploading means tran sferring them from the card

back to the PC.

When uploading or dow nloading files, select A SCII

text format. XMODEM , YMODEM , or other

formats are not used. RPBASIC-52 does not know

when you are typing in a program or if something

RPBASIC-52 PROGRAMMING GUIDE

1-3

else (la ptop o r main fram e) is sen ding it c harac ters.

The upload and download file does not contain any

special codes; they are simply AS CII characters.

Uploading programs is simply a process of receiving

an ASC II file. You or your program simply nee d to

send "LIST" to receive the enti re program.

Downloading a program requires transmitting an

ASCII file. As you type in (or download) a line,

RPBAS IC-52 tokenizes that line. The time to do

this depends upon its complexity and how many

lines of code have been entered.

RPB ASIC-5 2 must finish co mpiling a line b efore

starting the next one. When a line is compiled, a ">"

character is sent. This should be your terminal

programs pacing character when downloading a

program.

If your comm unications progra m canno t look for a

pacing prompt, set it to delay transmission after each

line is sent. A 100 ms delay is usually adequate, but

your program may be lo ng and com plex and require

more tim e. A result of short transm ission time is

missing or incomplete program lines.

A technique used to further program documentation

and reduce c ode space is the use of com ments

(REM) in a downloaded file. For example, you

could have the following in a file written on your

editor:

REM C heck position

REM R ead output from the pot and

REM calculate the position

2200 a = ain(0) :REM Get position

The first 3 com ments dow nloaded to the c ard

are ignored. Similarly, the empty lines between

comm ents are also ignore d. Line 2200, w ith its

comment, is a part of the program and could be

listed. The m ajor penalty by w riting a program this

way is increased download time.

Notice that you can write a program in lower case

characters. RPBASIC-52 translates them to upper

case.

Some p rogramm ers put "NE W" as the first line in

the file. During deb ugging, it is comm on to insert

"tempora ry" lines. This ensure s that these lines are

gone. Dow nloading tim e is increased w hen the old

progra m is st ill prese nt.

If you like to write programs in separate modules,

you can dow nload them separately. M odules are

assigned blocks of line numbers. Start up code

might be from 1 to 999. Interrupt handling (keypad,

serial p orts) m ight be from l ines 10 00 to 14 99.

Display output might be from 1500 to 2500. The

programmer must determine the number of lines

required for each section.

RPBAS IC-52 automatically formats a line for

minim um code space. For exa mple, you c ould

download the following line of code:

10 fora=0to5

When you listed this line, it would appear as:

10 FOR A=0 TO 5

Spaces are displayed but not stored. The following

line:

10 for a = 0 to 5

would be compressed and displayed as in the second

examp le above. Spac es are remo ved. How ever,

spaces as part of a remark or PRINT are not

removed.

RPBAS IC-52 contains no line renumbering

capability.

RPBAS IC-52 contains a rudimentary line editor

which allows editing a program line until a carriage

return is sent. The rubout or backspace key can be

used to delete c haracters wo rking backw ards form

the current chara cter. After a line is entere d, it

cann ot be e dited; y ou m ust ent er an e ntire ne w line .

Deleting an undesired line is done by typing the line

number followed by a carriage return. RPBASIC-52

automatically deletes all such lines.

Upperca se/Lower case

RPB ASIC -52 is ge nerally not ca se-sen sitive.

Program o r comm and lines m ay be entered in

lowercase or uppercase; ho wever they are (with

some exceptions) converted to upp ercase. The case

of text in remarks and strings is preserved.

RPBASIC-52 PROGRAMMING GUIDE

1-4

Variables and Con stants

More than 25,000 unique variable or constant names

may be defined. Names may be up to eight

characters in length and must begin with a letter

betw een A -Z (no num bers or s pecia l chara cters).

The rest of the na me m ay contain nu mbers or letters

and include the underline chara cter.

All numeric variables are floating point. Variables

cann ot be d eclare d as inte ger or d ouble precis ion.

RPBAS IC-52 supports eight digits plus sign and

exponent. Extra digits are simply discarded. The

range of valid va lues is ± 1E-12 7 to

±0.99999999E+127.

Nam es are identified by th e first and last characte rs

and its length. Identical length names with identical

first and last ch aracte rs are c onside red the sam e.

PUM P_42 and P RIM ER2 are co nsider ed the sam e.

The wa y to correct this is to chan ge the nam e length

or first or last character.

Variable na mes longe r than two cha racters require

more tim e to process. On ce a variable na me is

declared, it can only be erased by the CLEAR

sta tement or by LOADing in a new program.

It is possible to have variable names longer than 8

characters. A problem is the name length is stored

part ly as a modulo 256 number. What it boils down

to is a variable may or may not be recognized as

unique. The Basic considers FEED_BIN_01 and

FEED_BIN_11 as the same variable.

The original B ASIC-5 2 had a bug w here the variable

name 'F' was erased if it was the last letter in a

variable followed by a space. RPBAS IC-52

corrected this.

Watch out for comm ands em bedded in va riable

nam es. FO RM _5 con tains th e com man d FO R. A

BAD SYNT AX error is usually returned in these

instances. The statement FORM_5=BOTTO M does

not return an error but interprets it as

 FOR M_5=BOT TO M

The key is to lo ok at your statem ents as they are

printed on the screen and make sure they are what

you intended.

Valid variables names are:

CA5, DA15_679, PUMP_A, VALVE02, A(10),

SIZE(5), ABC_

Invalid variables, which may include embedded

commands include:

4C, C$0, GOTOE, FORM, #XYZ, _ABC

Constants are literal values. These are "known"

values as opposed to variables which can be

assigned any value, usually by a function. Consta nts

may be numeric or string. To RPBASIC, there is no

difference between the two.

Constants a re expressed as integer, decim al,

hexadecimal or exponential floating-point. The

range of valid values are:

± 1E-127 to ± .99999999e+127

Using constants instead of a number speeds up

execution by at least 5%. For exam ple, use

10 CH = 5
20 A = AIN(CH)

instead of

20 A = AIN(5)

Variables and constants are expressed as follows:

A = 5 Integer format
A = 5.3 Decimal format
A = 0ACH Hexadecimal format
A = 1.4E3 Exponential

RPBAS IC-52 supports eight significant digits plus

and ex ponen t and tru ncate s any e xtra dig its.

Hexadecimal constants with a leading alpha

character must be preceded by a leading zero. If you

fail to do this, RPBASIC-52 interprets them as

variab le nam es.

All hexadecimal constants are followed by a trailing

"H" (0FF H for exam ple). A "0" prefix is ne cessary

whe n the firs t num ber is a letter (A -F).

Certa in logic al ope rators, su ch as .N OT., .A ND .,

.XOR., and .OR., assume a 16-bit argument such as

0FFFFH. If you supply fewer than 16 bits, it returns

a 16-bit value based on the assumption the

unsupplied most significant bits are zero.

Subroutines

Use of subroutines tends to make programming

more modular and easier to follow. The number of

RPBASIC-52 PROGRAMMING GUIDE

1-5

RPBASIC-52 Memory Map

subroutines is limited to the amount of internal stack

space. Usually this is about 35 subroutines, but can

go down if F OR-N EXT loops are active. T his is

sufficient to handle al l mult i- tasking (ON LINE, ON

COUN T, ON KEY PAD, etc.) and several levels of

subroutines.

Most complex programs tend to have a maximum of

7 nested subrou tine levels. Usua lly the maxim um is

4.

Passing Variables Between Programs

All variables in R PBA SIC-52 are g lobal. This

means any routine can modify any variable at any

time. When a new program is loaded using

EXECU TE, variables are erased.

Values can be passed between programs using any

variations of PEEK and P OKE statem ents.

Addresses

Addresses are specified as either decimal or

hexadecim al numbe rs. Hexadec imal addres ses with

a leading alpha character nee d a preceding zero

otherwise they will be interpreted as variable name s.

100 POKEB,1,1000H,15
110 A = PEEKB(1,1000H)

Memory addresses range from 0 to 0FFFFH and

segments from 0 to 7. A segment represents a 64K

block of memory. Programs and RPBASIC -52

variables reside in se gment 0. V ariables are

generally stored in s egmen t 1 and higher.

Basic program area can be 32K or 64K, depending

upon t he am ount o f RA M ins talled .

Arrays

Arrays are single dimension and start with element

0. They are dim ensioned using the DIM statement.

Each varia ble may h ave up to 255 e lements (0 to

254). Undimensioned arrays default to 11 elem ents,

variable (0) through variable (10). Naming

conventions used for scaler variables apply to arrays.

Strings

Memory is al located to str ings using the STRING

command. There is no power up default. Up to 255

strings, identified as $(0) throug h $(254) are

available.

To use strings, you must first determine the

maximum length of any one string and then the

maxim um num ber of strings. Using the formula

(bytes/string + 1) * number of strings + 1

returns the number of bytes to allocate.

The AS C, CH R, and ST R com mands a re used to

evaluate and manipulate strings. Text assigned to a

string is enclosed in double quotation marks:

100 STRING 1000,40
110 $(0)=">03"

RPBASIC-52 PROGRAMMING GUIDE

1-6

OPERATING MODES

Command and Run M odes

RPBAS IC-52 operates in two modes, Command and

Run. Comm and mode is the direct, interactive mode

accessed when RPBA SIC-52 is not running a

program. The Basic console prompt ">" indicates

that B asic is r eady for Co mm and m ode in put.

Run m ode is when the processor is activ ely

executing a Basic program. Some commands (such

as SAVE, LIST, LOAD) can only be executed when

the processor is in co mma nd mode . Most Ba sic

instructions can be executed in either Command or

Run mode.

In Command mode, LOAD selects a Basic program

from the flash. The RUN command then causes the

selected progra m to exec ute. Within a B asic

program, the EXECUT E instruction is used to allow

the currently running program to call another stored

program. A number o f programs m ay be availab le

to run depending upon the card and flash EPROM

size installed. Refer to your hardware manual for

more information.

Autorunning Programs

Programs may automatically load and run on

powerup or reset when a specific jumper is removed

on the card. Refer to your card's hardware manual

for more information on jumper location.

When autorun is enabled, a LOAD 0, RUN sequence

is performed o n power up or reset. Program s are

chained using the EXECUTE command.

Stopping Program Execution

<Ctrl-C> halts the execution of a program and forces

the processor into Command mode (unless <Ctrl-C>

has been disabled). Operation can be resumed by

typing the CONT comm and. The STOP instruction

stops a running program; execution resumes with a

CONT command.

Sometimes it is desirable to not stop program

execution. To disable <Ctrl-C>, execute:

DBY(38) = DBY(38) .OR. 1

X-ON and X-Off Flow Control

Serial output can be stopped w ith <Ctr-S> (X-OFF),

which halts o utput to the conso le serial port only;

<Ctrl-Q> (X-ON) restarts it. You can use this

feature to prevent screens of output data from

scrolling by too quickly to read. After you type a

<Ctrl-S>, B asic halts program execution if it is

encountered during a PR INT com mand un til it

receives a <Ctrl-Q>. You can also reduce the serial

port baud rate or use the NULL com mand to slow

down the output of console data. Be careful of the

NUL L com mand. So me term inal program s print a

space character instead.

Cha racters are bu ffered fr om th e seria l port.

Therefore an additional 256 characters may continue

to print after a <C trl-S> is sent.

WARNING: Program execution halts during a

PRINT when an X -OFF is

receiv ed unt il a X-O N is re ceive d.

This me ans no other B asic

comm ands are exe cuted. Multi-

tasking interrupts are recognized

but not executed until after the

PRINT statement is finished.

To determine if X-OFF is active (printing halted)

before executing a PRIN T statement, check address

38, bit 5. If high, X-OFF is active.

100 IF (DBY(38) .AND. 32) = 0 THEN 200

Normally the result of the above test is 0 (no X-OFF

received) and the program branches to l ine 200. Of

course, i f X-OFF is received during a PRINT

command, program execution is suspended until an

X-ON is received. To clear X-OFF (due to a

protocol you are using), put the following line in:

120 DBY(38) = DBY(38) .AND. 0DFH

STORING PROGRAMS

RPB ASIC-5 2 progra ms are store d in non-vo latile

flash type EP ROM . The SA VE co mmand is used to

write programs from RAM while LOAD retrieves

them into RAM. Depending upon the card and the

EPROM type installed, up to 8 programs can be

saved and loaded. Refer to your card's hardware

manual for specific programming information.

RPBASIC-52 PROGRAMMING GUIDE

1-7

HARDWARE AND SOFTWARE
INTERRUPTS

RPB ASIC5 2 generate s two kinds o f interrupts:

hardware and so ftware. Hardware types are tho se

generated by a voltage change and go directly to the

processor. Software types require program execution

and set memory flags that are read by some other

program.

NOTE: Not all products support all or the same

interrupts. Make sure the "Cards:" category

in each com mand lists you r card or re fer to

your hardw are manua l.

There are six interrupts in RPBASIC-52, version 1.11

and later. In the unlikely scenario that all interrupt

conditions are met at exactly the same time, they

would be serviced in the following order:

ONTICK Periodic

ONITR External line

ON COUNT Counter

ON LINE Line change

ON COM$ Serial input

ON KEYPAD Keypad

Interrupt priority is based on hardware or software

type. ONTICK and ONITR are co nsidered hardware

types. Should either one of these interrupts become

active, ON COUN T, ON LINE , ON KEY PAD, and

ON C OM$ interrupts are n ot run until either o ne is

finished. If an ONTICK interrupt is running, an

ONIT R interrupt is no t serviced until O NTIC K is

complete. ON TICK a nd ONIT R have the highest

priority.

ON C OUN T, ON LINE, a nd ON COM $ interrupts

are serviced after ONT ICK and ONIT R are com plete.

Should any these last three interrupts occur

simultaneou sly, ON C OUN T would be execute d first.

However, if any of these three interrupts occur after

one has starte d, then it would take priority.

Interrupts oc cur any time d uring prog ram execu tion.

The RP BASIC operating sys tem sets app ropriate

flags indicating which kind of interrupt needs

services. At the end of the current statement it checks

these flags. The time interval between the actual

interrupt and start of the interrupt routine is called

latency.

Latency varies a great deal, depending upon the type

of interrupt an d comm and curre ntly executed . A

"typical" tim e in RPB ASIC is less th an 1 ms.

However, it can be as short as several micro-seconds

to several sec onds. Th e reason it ca n take so long is

due to the Basic subroutine. Suppose an ONTICK

interrupt is in progress and it is written so it takes

several seconds to com plete. Since it is the highest

priority, all other interrupts are locked out. The best

way to correct this situation is to make all interrupt

routines as short as possible. This is handled by

setting a flag using a variable in the interrupt routine

then exiting. Then at some other non-critical time,

the interrupt is serviced.

WARNING: RPB ASIC-5 2 offers a op portunity

for all interrupts to occur

simultaneously. It can handle all 21

interrupts simu ltaneously.

However, it cannot handle them

when they occur at a rate faster than

they are serviced. Servicing all 21

interrupts requires a minimum of 21

ms. If interrupts consistently come

in faster than they can be handled,

the program will stop and a control

stack error returned.

Whenever an ON COUNT or ON LINE multitasking

command is enabled, overall program speed slows

down. If all O N CO UNT and ON LINE in terrupts

were enabled (but lines were not changing), program

speed slows down by about 6%.

RPBASIC-52 PROGRAMMING GUIDE

1-8

MULTITASKING CONSTRUCTS

COUNT M ultitasking

RPBASIC-52 on the RPC-3XX series of cards can

count pulses while a program is running. Checking

and counting is performed at assembly language

speed d uring each syste m tick time (eve ry 5 ms).

This capability effectively speeds up program

performance and simplifies programming.

This section describes only software counters on the

card. Hardware counters are in a separate category

are disc usse d in the h ard war e sectio n of t he c ard 's

manual.

Just about any valid digital I/O line can be designated

as a counter input. Excep tions are interrupt inputs,

keypad, and display lines. Even if a digital line is an

output, it can b e designated as a counter input. This

is useful in situation where you may want to limit or

keep track of the number of pulses to a motor,

solenoid, or lamp.

Eight software counters are available. They are

numbered 4-11. Counters 0-3 are reserved for any

hardware ones that may or may not be on your board.

Counting is enabled as soon as a line is designated as

a counter us ing ON C OUN T. The digital line is

sampled every 5 ms. When it goes from a high to low

state, its counter is incremented. A line must be

sampled at a high state be fore it can be counted a gain.

A line must be at a high and low state for a minimum

of 5 ms each to ensure detection. In theory the

maximum counting rate is 100 H z. Howe ver, due to

other multitasking events (mainly serial ports),

effective maximum rate is about 95 Hz assuming a

perfect square wave.

There are two commands used in COUNT

multitasking: COUNT and ON CO UNT. Notice

there are two COUNT commands. One is a function,

which returns a value. This is the one used by the

software counters. The o ther COUN T comm and is a

statement, which writes a value to a hardware

counter. T his is not used b y the software co unters.

Software co unters canno t be preset.

ON COU NT declares or clears a multitasking

process. T here are thre e variations o f this comma nd.

Referring to the ON C OUN T com mand in this

manual, the first synta x defines the d igital line to

count, number of pulses to count before executing a

subroutine . When th e specified n umber o f pulses is

reached, the counter resets and a count interrupt flag

is set. Should a higher priority interrupt be executing,

the count sub routine is dela yed until the highe r one is

finished. The COU NT func tion is not usually use d in

conjunction with this version.

The second syntax simply declares a line for

counting. Use the COUNT function to return the

number of pulses at the line. When the count reaches

65,535 it rolls over to 0 . To reset o r clear a cou nt,

simply re-declare the ON COUNT statement for that

line.

The third syntax shuts off multitasking for that

counter.

The ON C OUNT command can be used to expand

the numbe r of lines used a s an ON LINE c omman d.

The limitatio n here is an interr upt is generate d only

when a line goes low. Set the count to 1 in the ON

COUN T declaration.

Serial Communication Multitasking

ON COM $ defines a program branch when either a

specific char acter or num ber of char acters is met.

Criteria are sp ecified in the O N CO M$ state ment.

When the criteria is met, the incoming data is referred

to as a pack et.

This statement is especially useful in a networking

application using the RS-485 serial port. Other

devices, suc h as mode ms or scales can be use d to

generate an interrupt using R S-232. A ll serial ports

can use ON COM$.

Data pa ckets are retrie ved using the COM $ function.

In RS-48 5 network ing applicatio ns, the STR (8,...)

function is useful for determining its address.

Two ser ial applicatio n program s are in this manu al.

The first program is a simple RS-485 network

communication handler, shown in Appendix A. The

second u ses a mod em to auto receive and is in

Appendix B.

The RS-485 network handler is set up as a master-

slave proto col. Slaves " do not talk u nless spoke n to".

The host transmits to all receivers. All receivers

transmitters go to the hosts receive line. The ho st

does not transmit until it receives a response from a

node or a timeout is reached.

RPBASIC-52 PROGRAMMING GUIDE

1-9

There a re many co mmunica tion protoc ols. For this

example, the protoc ol looks something like this:

>03MB1

The pro tocol starts with the <cr> cha racter. This

character synchronizes all units and alerts them that

the next few characters coming down are address and

data. In this case, ">03" is the nodes address. Next

follows a command (M). Depending upon the

command, data may or may not follow. An optional

checksum may follow. The figure below shows the

elements in a d ata packe t.

The response depends upon the nature of the

command. Suppose the command M means "return

door switch status". The card could read the port and

respond with A1<cr>. The first letter A is an

acknowledge. Data, 1, indicates a high.

Errors are returned with the letter N (negative

acknowledge) followed by a number. The number

identifies the general error type.

The program in Appendix A can be used on any of

the RPC-3xx series cards. Refer to this program for

the following description.

The program starting at line 1000 is the network

comma nd handle r. Line 100 0 gets the da ta packet.

Line 1010 determines if it is meant for this card.

Commands are sorted, or parsed out beginning at line

1020. F or this examp le, comma nds are assu med to

begin with the letter 'A'. By subtracting the ASCII

value of A, we set up the O N GO TO struc ture to

quickly hand le each com mand type . This samp le

assumes 5 commands. If more are desired, another

ON GO TO can be used. The start of the statement

could read: ON OA-5 GOTO

linenum ber,linenu mber,line numb er...

Command types can be broken into two groups: The

first group performs an action such as setting a line,

outputting to the display, or begin a complex timing

process. The second group is a function, which

returns data. This data can either b e raw, such as a

line status or voltage input, or processed. Processed

data can be averages, converted values (feet/minute),

operator input from a keypad, or a status report (such

as OK) to determine if the board is there and

functioning. The intent of these commands is to show

how data is converted from string to number or

number to string.

This example uses the follow ing commands:

Command Associated Function

Data

A 1 or 0 Set line 8

B line, analog Motor speed

output 0 to

4095

C 0-1 Position from counter

D String Print to display

E (none) Power up

acknowledge

F (none) General status

Command E is very useful to implement in situations

where the host does not know if a unit reset (due to a

power surge or something). The host may make

certain assumptions about the status of a unit and

continue to issu e comm ands base d on invalid

assumptions. Lines that were set before may not be

set.

This pro gram is written so that no com mand is

RPBASIC-52 PROGRAMMING GUIDE

1-10

processed unless the ho st "knows" this node has just

reset. Any valid command , unless it is "E", returns a

"N2" neg ative acknowledgem ent. The host

recognizes this as a power up condition. Line 1220

checks for a valid power up flag.

Command F could return any number of status

conditions . The way it is imp lemented h ere, data is

returned to indicate the type of error. A 0 return

indicates things are just fine. The type and value of

data returned will depend upon the number of error

conditions. If error conditions were binary weighted

(1, 2, 4, 8...) then the receiver could determine

exactly what errors are in the system.

A unique a ddress in the message p acket, >99 , tells all

units using this pro gram to go to a 'safety' mode. It is

used for emergency shut down situations. Nodes do

not reply to this c omman d. The p rogram e xample

does a simple return as your application determines

approp riate respon se. The ad vantage to u sing this

command is in emergency situations all units get the

message in u nder 50 ms. It could tak e consider ably

longer, per haps 1 sec ond in a 20 node system , to poll

all units.

A networking factor is communication time. Longer

messages tak e longer to p rocess. At 9 600 ba ud, it

takes abou t 12 ms to sen d out a 10 character m essage.

This assumes the host can assemble a message string

instantaneously. Add 5 ms processing time by the

remote card (and 5 ms could be considered a

minimum) before anything is sent out. It could be

nearly 50 ms for a complete exchange. Using a

simple command structure, about 20 message

exchange s per secon d are po ssible.

Increasing the baud rate decreases message exchange

time, but there is a point of diminishing return. Going

to 19,20 0 baud c uts serial com munication time in

half. However, message processing time stays the

same. At some point in time the processing power of

the host and remote units is a major factor. RPC

cards pro cess comm ands roug hly at a rate of 1/m s.

To verify an address an d begin ca rrying out a

comma nd takes ab out 30 ms . Any additio nal data

processing increases this time.

The nex t application in Appen dix B uses a modem in

a receive ap plication. T his illustration uses a g eneric

1200 baud modem, although a higher speed modem

can be use d provid ed incom ing data do es not com e in

so fast the buffer fills an d characte rs are lost.

COM1 is set as the receive port. The modem

connects to the RPC card serial port using a VTC-9F

serial cable. Most external modems have a DB-25F

(female) connector for the serial port, therefore a DB-

9F to DB -25M adapter is ne cessary. Also , since both

the RPC card and modem are designed to plug into a

PC, a null modem adapter must be inserted between

the DB-9 connector on the VTC -9F and adapter. The

connectors are shown below:

 modem > DB9F to DB-25M > null modem > VTC-9F

This can be somew hat of a kludge. A nother way is

to make a custom ca ble from the R PC card 1 0 pin

IDC con nector to a DB -25M. If you ch oose this

route, connect the pins in the following manner:

IDC DB-25 Function on

male RPC c ard

3 2 Tx output

4 5 RTS input

5 3 RXD input

6 4 CTS output

9 7 Ground

Your modem may have configuration switches. Set

these switches to the following conditions to use the

sample program:

Force DTR lead (pin 20) true to enable modem

to execute comm ands.

Modem responds to comm ands with english

word result codes.

Result codes sent to the RPC card.

Echo characters while in the command state.

Modem autom atically answers an incoming

call.

Force CD lead (pin 8) true.

Enable modem com mand recognition.

You may have to set these conditions in software.

There is a ce rtain sequence , or protocol, that is

followed when answering a phone. The steps

(CYCL E) follows:

CYCLE Action

RPBASIC-52 PROGRAMMING GUIDE

1-11

 0 Wait for "RING" message. Modem

auto answers.

 1 Look for "CONNE CT".

 2 Get password. If invalid, prompt for

password again.

 3 Send succe ssful log in me ssage .

Prompt for comm and and process

them.

 4 Take modem off line and reset

 5 Delay for a few seconds and send sign

on message.

The actual program is more complicated than the

steps indicate. Timeouts are used to disconnect the

modem when there is inactivity. Three failed

passw ord atte mpts takes t he m odem off line.

Ring ing bu t no co nnec t takes the m odem off line.

Superfluous <cr>'s are ignored.

Activity timeout is set for 10 seconds. The

ONTICK routine checks for activity every second

when the program cycle advances to step 1 and

beyon d. ON TIC K cou ld be fa ster if it is nece ssary.

Keep in mind that ONTICK interrupts have the

highest priority. Keep tick interrupt processing

times short and as infrequent as possible. Frequent

and/or long processing times take away from other

program times.

ON COM $ interrupt uses a program cycle pointer

(variable CYCLE) to direct the next activity on an

interrupt. When a message is received, an interrupt

is generated. Processing the message is handled by

the ap propria te routi ne poi nted to by CY CLE . A

<cr><lf> sequence is simply ignored and treated as a

non-event.

After the password is accepted, the main purpose of

the application takes over. There are many

scenarios, or situations, possible:

1. The c omp uter is u sed for d ata log ging.

Dialing in merely dumps data.

2. The computer is used for control. A dial up

is for new instructions or parameters.

3. Some combination of data logging and

control.

4. A computer will dial up and query and/or

issue new instructions.

5. A person using a terminal will dial up the

control card and query and/or issue new

instructions.

6. A com puter and/or person at a terminal w ill

dial up and query and/or issue new

instructions.

7. A new program is downloaded to the card.

The number of possible applications is much too

complex to even begin showing code.

Some a pplications use a person at a term inal to

remotely query the card. In this situation, it is nice

to return a characte r as soon as it is typed in. T his

can be done by setting the users terminal to local

echo. However, you don't know if the card received

what you send. The remote card can echo back

characters as they are sent. To do this requires a

program change. ON COM $ must either be disabled

or changed to generate an interrupt on each character

input. If ON C OM$ is disabled, then the m ain

program has to be structured so it can process

incom ing ch aracte rs imm ediate ly.

If ON COM$ generates an interrupt on each

character, then the incoming data rate should be

relatively slow (1 c haracter every 5 0 ms). Note th is

is not th e baud rate. Th e baud rate ca n still be 9600.

It just should not get characters more than 20

times/second. For hand typing situations, this is just

fine.

When another computer is talking to the card,

immediate echo may not be necessary. Instead, the

incoming message can be echo ed back w hen a <cr>

is received (or when ON COM$ generates an

interrupt). The cycles would merely increase based

on the command. In some ways, it becomes like a

RS-485 n etwork desc ribed above. A comm and is

received, parsed, and processed.

Scenario 7 requires some cautionary notes. It is not

unusu al to do wnlo ad pro gram s throug h a m odem .

There is no difference between a modem down load

and one directly connected to a PC. The UI and UO

commands m ust be set to 1 when using COM 1 and

before going into the command mode (executing an

END or STOP statement in th e program).

A problem arises when communication is lost for

some reason. While the RPC cards have a watch

dog timer, they are not enabled during command

mode (T his is true of the RP C-320 and RPC -330.)

When comm unication is lost, usually a ll that is

required is to redial the modem, assuming it has

been set to auto answer. If comm unication is lost

due to som e external force (ce ll phone or netw ork

failure), the ca rd will just sit th ere an d not ru n.

When the application is mission critical, an external

RPBASIC-52 PROGRAMMING GUIDE

1-12

watc hdog t imer may be nec essary to resta rt the ca rd.

Make sure call waiting is disabled.

ON LINE Multitasking

ON LINE is used to detect changes in a line. An

interrupt is generated every time a line goes high or

low. Use this c omm and to detect ch anges in safety

interlocks, level switches, or process command

switches. Using this multitasking statement saves

code and time because checking is done

automatically in the background. A line must be

high or low for a m inimum of 5 ms to ensu re

detection to another state. Up to 8 lines can be

monitored at one time.

This command is re-entrant, meaning when a routine

is long enough and change interval short enough the

interrupt is called twic e. When there is this

potential, the first part of your prog ram should

branch to routines that handle high and low line

conditions. Use the LINE function to return the

current status of a line.

ON CO UNT can be used to expand the number of

line changes. Simply specify a count of 1. An

interrupt is generated when the l ine goes low.

Program execution slows down by up to 5% when

all ON C OUN T and O N LIN E statem ents are

enabled.

ON COUN T Multitasking

Up to 65,535 pulses can be counted on any one of

eight lines. A line m ust be both low and high for a

minimum of 5 ms to ensure counting. Maximum

reliable counting rate is 95 Hz.

Counters spe cified in this statem ent are software

counters only. It is not related to any hardw are

counters on the card.

A num ber of syntaxes a llow simp le counting to

interrupt generation when a nu mber of cou nts is

reached.

The number of counters can be increased by using

ON LIN E. Counting rate must be very slow (less

than 1 0 time s/seco nd) to e ffectiv ely use this m ethod .

A counter increments when a line is low. Use the

LINE function to read the status of a line.

Program execution slows down by up to 5% when

all ON C OUN T and O N LIN E statem ents are

enabled.

Assembly Language Interface

Assembly language programs must be placed in the

RPBASIC-52 EPRO M. When using the Basic,

assembly language program s should start at address

6000H or higher, up to 7FFFH.

Norm ally a 3 2K E PRO M is u sed to s tore R PBA SIC.

A 64K EPR OM m ay be used provided a

modification is performed. R efer to your hardw are

manua l under ASSEMBLY LANGUAGE INTERFACE

for information.

Documented assembly language interface calls listed

in the Intel MCS BASIC-52 Users Manual will not

work with RPB ASIC-52. This is because

RPBASIC-52 has be reassembled and code shifted

around.

Assembly language development environment

An econ omical w ay to develop ment asse mbly

language pro grams and still keep RPB ASIC-5 2 is to

use an EPROM emulator. These are available from

several sources.

Parallax Inc (916) 721-8271

JDR Micro Devices (800) 538-5000

Model typ es frequently cha nges, so it is best to

conta ct thes e com panie s for the latest in forma tion.

Generally, these cards connect to the parallel port on

a PC. Do wnloading a program is g enerally unde r 1

second.

The wa y programs are develope d would be to

remove the RPBASIC-52 EPROM and read it by an

EPROM programmer. Save the file.

Install the EPROM emulator into the card. Then,

load in both the RPBASIC-52 binary file and your

assembly language bin ary file using the softw are

provided by the emulator.

Assembly language routines are accessed using the

Basic CALL command.

Another de velopme nt method is to use an In-Circu it-

Emulator (ICE). Which type you use depends upon

the processor type and your budg et.

RPBASIC-52 PROGRAMMING GUIDE

1-13

OPERATORS

Operator categories include:

Arithme tic =, +, *, /, **, SQR

Relational =, <>, <, >, <=, >=

Logical .AND., .OR., .XOR., .NOT.

Value ABS, INT, PI, RND, SGN

Operator Precedence

The prece dence of ope rators determin es the order in

which m athema tical operations are e xecuted. Ba sic

scans an expression from lef t to r ight and performs

no operations until it encounters an operator of

lower or equal precedence. For instance,

mult iplica tion tak es prec eden ce ove r additi on.

Parenthetical expressions have the highest

precedence.

The following list is Basic's order of precedence:

1. Operators in pa renthesis

2. Exponential operators (**)

3. Negation (-)

4. Multiplication (*) a nd division (/)

5. Addition (+) an d Subtraction (-)

6. Relational expressions (=, <>, <=, <, >=, >)

7. .AND. (logical AND)

8. .OR. (logical OR)

9. .XOR. (logical XOR)

Parenthetical expressions have the highest

precedenc e, so their use is a good way for you to

reduce am biguity and m ake your progra ms m ore

readable. However, parenthetical expressions use

internal data memory.

ARITHMETIC OPERATORS

Arithme tic operators perform basic arithme tic

functions:

+ addition

- subtraction, not negation

* multiplication

/ division

** exponential

OBSOLETE and MODIFIED
COMMANDS

A number of comm ands in the original BASIC-52

have been replaced, obsolete, or no longer

functional. The follo wing is a list of obsole te

commands and are no longer available:

CLEAR I

CLOCK0

CLOCK1

FPROG through FPROG6

IP

PORT1

PROG through PROG6

RAM

RCAP2

ROM

RROM

TIMER1

TIMER2

T2CON

XFER

XTAL

The follow ing comm ands have b een mod ified with

respect to name and operation:

Old New

ONEX1 ONITR

ONTIME ONTICK

PGM BSAVE

RROM EXECUTE

TIME TIME

RPBASIC-52 PROGRAMMING GUIDE

1-14

Some com mands have bee n added to or otherwise

enhanced:

IDLE

INPUT

P W M

The fo llowin g com man ds are n ew to BA SIC-5 2.

Note that not a ll comm ands/functions a re available

on all cards.

AIN

BLOAD

BSAVE

CARD$

CLEAR COM

CLEAR DISPLAY

CLEAR KEYPAD

CLEAR TICK

COM

COM$

COUNT

DATE

DISPLAY

EXECUTE

KEYPAD

LINE

LOAD

ON COM$

ON COUNT

ONITR

ON KEYPAD

ON LINE

ONTICK

PEEK

POKE

SAVE

SPROM

STR

TICK

TIME

WDOG

CON FIG

COMMAND GROUPS

The Comm and Reference is a detailed description of

each RPBA SIC-52 command, function, and

instruction. Note tha t not all cards imp lement all

comm ands. Also, this list is accura te as of the date

of printing. New er cards ma y not mak e it into this

programming guide.

The following is a list of commands grouped by

functio n.

Listing and control

LIST

LOAD

NEW

RUN

STOP

SAVE

Multitasking

ON COM$

ONITR

ONTICK

ON LINE

ON COUNT

ON KEYPAD

Program flow and looping

DO-WHILE

DO-U NTIL

END

FOR-TO-NEXT

GOSUB

GOTO

ON-GOSUB

ON-GOTO

REM

RETURN

RETI

RPBASIC-52 PROGRAMMING GUIDE

1-15

Data storage and retrieval

BLOAD

BSAVE

CBY

DBY

DATA

DIM

POKE

PEEK

READ

RESTORE

XBY

Operators

/

-

+

*

**

<

<=

<>

=

>

>=

ABS

AND

ATN

COS

EXP

INT

LOG

NOT

OR

PI

RND

SGN

SIN

TAN

XOR

The tr igonometric operators SIN, COS, and TAN

use a Taylor series. Results are calculated to seven

significant digits. The algorithm reduces the

expression to a value between zero and PI/2 and

results in a loss of precision if input_expr is large.

Relational operators (=, <>, <, etc.) return a result of

65535 if the relation is true and zero if it's false. The

result may be displayed or used in further

calculations. Beware when comparing calculated

floating-point values as rounding errors may produce

unexpected results.

Logical operators perform bitwise operations on

expressions w hich evaluate to valid positive intege rs

between OH and OF FFFFH (65535). All non-

intege r value s are tru ncate d to inte gers.

Hexadecimal values with a leading alpha character

must be pre ceded by a le ading zero or B asic will

interpret your constant as a variable name. If you

supply fewer than 16 bits to NOT it will return a 16-

bit value based on the assumption the unsupplied

bits were zeros.

Serial input/output

CONFIG BAUD

COM

COM$

GET

INPUT

ON COM$

UI

UO

Printing and formatting

CR

PRIN T, P., ?

PH

SPC

USING

Hardware input/output

AIN

AOT

CARD$

COUNT

DATE

DISPLAY

KEYPAD

LINE

ON COUNT

ONITR

ON KEYPAD

ON LINE

P W M

TIME

Real tim e controls

EXECUTE

IDLE

TICK

WDOG

RPBASIC-52 PROGRAMMING GUIDE

1-16

String operation

ASC

CHR

STR

STRING

Strings in RPBASIC-52 are one-dimensional arrays

of characters. Strings are stored as a sequence of

ASC II values termina ted with a 0D H (the AS CII

value of a carriage return).

Memory for strings is al located by the STRING

opera tor. Strin g varia bles ar e $(0) th rough $(254) .

Strings may be any length, lim ited only by ava ilable

mem ory. Howe ver, if you wish to assig n a string to

explicit text in quotes , it may be up to

[72-{number of digits in string identifier}]

characters in length. In other words, $(9) may be 71

characters long, but $(200) may be only 69

characters long. This is due to the BASIC-52

program line length limit of 79 characters. Longer

strings must be a ssigned one c haracter at a tim e with

the ASC operator or the X BY instruc tion. Explicit

text assigned to a s tring must be e nclosed in dou ble

quotation marks. The ASC and CHR operators can

evaluate individual characters in a string.

Interrupts

ON COM$

ON COUNT

ONITR

ON KEYPAD

ON LINE

ONTICK

RETI

Other opera tors

IDLE

Memory Allocation

FREE

LEN

MTOP

RPBASIC-52 PROGRAMMING GUIDE

2-1

ABS
Syntax: ABS(expr)

Where: expr = any number in Basic's range

Function: Returns the absolute value of an expression

Mode: Comm and, run

Use: PRINT ABS(C)

Cards: All

DESCRIPTION

The absolute value of a number is always positive or zero.

RPBASIC-52 PROGRAMMING GUIDE

2-2

AIN
Syntax: AIN(channel)

Where: channel = 0 to 7, is channe l to convert.

Function: Converts analog input to digital number and returns a number from 0 to 4095 (0 to 1023 for the RPC-

52)

Mode: Comm and, Run

Use: B = AIN(N)

Cards: RPC -52, RPC -320, RPC -330. RPC -52 range is 0 to 102 3 (10 bit).

DESCRIPTION

AIN returns a number corresponding to the input voltage. A number from 0 to 4095 (0 to 1023 for RPC-52)

is returned. The result is returned in under 2 ms. Input voltage may be 0-5V or ±2.5 volts, single ended or

differential. Inputs are configu red for 0-5V, single e nded input on p ower up. U se CON FIG AIN to configure

each chann el's cha racteri stics.

The RPC-52 does not have differential inputs or use CONFIG AIN. Refer to the RPC-52 hardware manual

for more information. The following explaination assumes a 12 bit result (0 to 4095) is returned.

A result is scaled to obtain a result representing a physical quantity. The general equation is:

variable = K * AIN(n)

where K is a scaling constant and n is the cha nnel number. The scaling constan t is determined as follows:

K = (maximum quantity - minimum quantity) / 4096

The p hysica l quan tity can be vol ts, curre nt, press ure, inc hes, or w hatev er me asurem ent yo u are ta king.

"maxim um quan tity" is the numb er with its output at 5 v olts while "m inimum quantity" is the num ber at 0

volts. Usually, the minimum quantity is 0.

Suppose you have a 0-200 PSI pressure transducer with a 0-5V output. To compute the constant for one

PSI/count, divide the pressure over the resolution:

K = 200/4096

K = 0.04828 = PSI change per count

To measure 0-5 volts, K = 0.001220703

RELATED

CON FIG AIN

ERRORS

BAD ARGUMENT When channel expr > 7 or negative

BAD SYNTAX When channel expr left out

RPBASIC-52 PROGRAMMING GUIDE

2-3

ASC
Syntax: ASC(ASCII character)

ASC(string,position expr)

Where: ASCII character = number from 0 to 255

string = any valid string v ariable

position expr = 1 to length of string

Function: Returns or sets the integer value of an ASCII character or the character in string at position expr.

Mode: Comm and, run

Use: PRINT ASC (C)

ASC($(3),1)=48H

C = ASC($(0),P)

Cards: All

DESCRIPTION

The ASC operator either sets or returns the value of an ASCII character. Use ASC to evaluate, change or

manipulate individual characters in a string.

The first syntax retu rns the value of an ASC II character. If ASCII character were the letter 'B ', a 66 is

returned. Basic converts any lower case variable symbols to upper case. Lower case characters must be put

into a string to be evaluated.

The second syntax, shown under Use, sets a character in a string to a specific value. This is useful when you

want to manipulate individual characters in a string.

The third syntax returns a value in string at position expr. This form is usefu l when you want to eva luate

individual charac ters in a s tr ing , such as generat ing a checksum.

The STR comma nd, unique to RPBA SIC-52, manipulates entire strings.

RELATED

CHR, STR, STRING

ERROR

SYNTAX Attempt to convert an improper value.

EXAMPLE

The following example prints ASCII values from the string $(0). The first 3 characters are modified at lines

70 to 90. The result is then printed.

10 STRING 200,20
20 $(0)="abc123"
30 FOR N=1 TO 6
40 PRINT ASC($(0),N),
50 NEXT
60 PRINT
70 FOR N=1 TO 3
80 ASC($(0),N)=65+N
90 NEXT
100 PRINT $(0)

READY
>RUN
 97 98 99 49 50 51
BCD123

RPBASIC-52 PROGRAMMING GUIDE

2-4

ATN
Syntax: ATN(expr)

Where: expr = value betw een 0 and P I/2

Function: Returns a trigon ometric arc-ta ngent of expr. Returned result is between -PI/2 and PI/2 radians.

Mode: Comm and, run

Use: PRINT 4*AT N(1)

Cards: All

DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first reduce the

argument to a value that is between 0 and PI/2. The algorithm used to reduce the value will reduce accuracy

when expr is large. To maintain accuracy, keep the arguments for trig functions as small as possible.

ERRORS

ARITH. UNDERFLOW expr or result is less than RPBASIC-52's smallest floating-point value of ±1E-127

ARITH. OVERFLOW expr or result is greater than RPBASIC-52's largest floating-point value of

±.9999999E+127

DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES
100 PRINT SIN(PI/2),COS(10001*PI),TAN(5*PI/4)
110 PRINT ATN(TAN(PI/4))/PI

>run

1 -1 1
.24999996

RPBASIC-52 PROGRAMMING GUIDE

2-5

BLOAD
Syntax: BLOAD to RAM segmen t, RAM address, fro m EP ROM segmen t, EPRO M add ress, length

Where: to RAM segment = 0 to 7, is the 64K block in RA M to write to

RAM a ddress = 0 to 65,535, is the ad dress to write to

from EPROM segment = 0 to 7, is the 64K block in EPROM to read from

EPRO M address = 0 to 65,535, is the address in EPROM to read from

length = 0 to 65,535, is the number of bytes to move from EPROM to RAM

Function: Transfers a b lock of b inary data f rom flash EPROM to RAM.

Mode: Command, RUN

Use: BLOA D 1,0,5,0,1000

Cards: RPC-320, RPC-330

DESCRIPTION

BLO AD transfe rs a block of binary info rmation from EPRO M to R AM. B LOA D does no t check to see if

there is enough R AM m emory to sa ve to or if the EPR OM is la rge enough to p erform the transfe r. Data is

retrieved from RAM using PEEK type functions.

segment can be though of as the X0000H address of the RAM or EPROM. When a segment of 1 and an

address of 4300H are used, an address equivalent to 14300H is used to access the device. When a 128K

RA M or E PRO M is u sed, segment is 0 or 1. A 512K RAM or EPROM can have a segment of 0 to 7. A 32K

device only has segment 0.

NOTE: Avoid using RAM segment 0. This is where RPBASIC program and variables are used. When

segment 0 must be used, transfer data to above the MTOP address location.

Data transfer rate is about 23.5 m s/1000 bytes. D uring BLO AD tim e, ONT ICK and ONIT R interrupts are

recognized but not serviced. If these comma nds must be serviced quicker, transfer data in smaller blocks.

BSAVE t ransfers da ta from RAM to fl ash EPROM.

RELATED

BSAVE , all PEEK commands

ERROR

BAD ARGUMENT When any parameter above is out of limits.

EXAMPLE

The following example POKEs data into segment 1 of data RAM. The data is then saved to EPROM

segment 6 and loaded back to a different location in RAM. The data is then verified. A 128K RAM and

512K flash E PRO M m ust be in stalled for this e xam ple to w ork.

10 RA=512
20 FOR N=0 TO 1000 STEP 2
30 POKE W1,N,N
40 NEXT
50 FOR N=2000 TO 3000 STEP 2
60 POKE W1,N,0
70 NEXT
80 BSAVE6,RA,1,0,1000
90 BLOAD1,2000,6,RA,1002
100 FOR N=0 TO 1000 STEP 2
110 B=PEEKW(1,N+2000)

 120 IF B<>N THEN PRINT "Error address",N," data is",B
130 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-6

BSAVE
Syntax: BSAVE to ROM segmen t,ROM address,fro m RA M segm ent, RAM address, len gth

Where: ROM segment = 0 to 7, the 64K byte block to w rite to

ROM address = 0 to 65535, ad dress to write to

RAM segment = 0 to 7, a 64K byte block to read from

RAM a ddress = 0 to 65535, address to read from

length = 0 to 65535, nu mber of byte s to write

Function: Writes raw binary data to f lash EPROM from RAM.

Mode: Comm and, run

Use: BSAVE 1, ROMTO , 1,RAMPTR , 512

Cards: RPC-320, RPC-330

DESCRIPTION

BSA VE w rites a block of binary in formation to E PRO M from RAM . Use the PO KE com mands to w rite data

to RAM.

WARNING: BSAVE should be used sparingly. The flash EPROM has a limited number of write cycles

(1000) to each se ctor.

A length of 0 writes 65,536 bytes.

Lim ited pa rame ter che cking is perfo rmed . Basic assum es RA M ex ists at th e segm ent an d addr ess spe cified.

Basic checks to make sure the ROM segment specified is within limits of the installed EPROM , but addresses

and lengths are not checked.

WARNING: BSAVE can write over programs saved using the SAVE command.

A segment can be though of as the X0000H address of the RAM or EPROM. When a segment of 1 and an

address of 4300H are used, the address equivalent to 14300H is used to access the device. When a 128K

RA M or E PRO M is u sed, segment is 0 or 1. A 512K RAM or EPROM can have a segment of 0 to 7. A 32K

device only has segment 0 and i ts address is limited to 32767 decimal, or 7FFFH.

A flash EPROM is written to in sectors. A sector is 64, 128, or 512 bytes for the 32K, 128K, or 512K

EPR OM respec tively. R PBA SIC a utom atical ly dete cts the type o f EPR OM installe d whe n it writ es to it.

You must pay attention to the sector size for two reasons. First, a sector is the minimum number of bytes

written. If a program requires only 35 by tes to be saved, 51 2 bytes are w ritten when a 5 12K EP ROM is

installed. If the following is performed

1000 BSAVE 6,5,1,1000H,35
.
.
2000 BSAVE 6,42,1,1025H,35

several things happen. The data saved by line 1000 is overwritten by the data in line 2000, even though

differe nt writ e addr esses were specif ied. Th is bring s us to th e seco nd rea son se ctor siz e is con sidere d.

RPB ASIC fo rces the requeste d EPR OM a ddress dow n to an even se ctor address. In both ca ses above, data is

written to the EPROM starting at address 0, not at 5 or 42.

The solution to this situation is to write data out in even sector size blocks and to write them on sector

boundaries.

A program is not required to write in full sector sizes. When less than 1 sector is specified, RPBASIC writes

the next data in RAM until the full sector size is reached. When a large number of bytes are written, covering

RPBASIC-52 PROGRAMMING GUIDE

2-7

many se ctors, the last written sec tor is filled in with mo re data from R AM. N ote that BL OAD allows data

retrieval of any length and is not affected by sector size.

The easiest way to determine an even sector address is to "AND" the EPROM address with either FFC0H,

FF80H, or FE00H for 32K, 128K or 512K EPR OMs respectively.

Data can be saved "ab ove" program s. The following is a way to dete rmine the ne xt free sector for writing to

flash.

1) Save the program. Note the number of bytes saved.

2) Add the sector size (based on flash EPROM type) plus 64 bytes to the number of bytes saved. (64

bytes is for program overhead). For example, suppose the program is 28145 bytes long and a 512K

(29C040) EPROM is installed. 28145 + 512 + 64 = 28721

3) At the terminal, print the following:
print 28721 .AND. 0FE00H

the response is
 28672

What yo u have done is told the com puter to print the length o f the program + 512 bytes (for the sec tor) +

64 bytes (for program overhead) and 'and' it with FE00H. Notice the address, 28672, is higher than the

number of bytes saved and less than the number we figured for sector size and overhead.

4) BSA VE can be used starting at this a ddress (28672, or 70 00H).

This me thod will wo rk regardless of the nu mber of prog rams save d or segme nt numbe r.

Writing takes about 35 ms/1000 bytes. During BSAVE time, ONTICK and ON ITR interrupts are recognized

but no t servic ed. If the se com man ds mu st be se rviced quick er, writ e data in sm aller bl ocks.

RELATED

BLOA D, POKE com mands

ERRORS

BAD ARGUMENT When any parameter is out of range or EPROM does not work properly.

HARDWARE When verify to EPROM is bad

EXAMPLE

The following example POKEs data into segment 1 of data RAM. The data is then saved to EPROM

segment 6 and loaded back to a different location in RAM. The data is then verified. A 128K RAM and

512K flash E PRO M m ust be in stalled for this e xam ple to w ork.

10 RA=512
20 FOR N=0 TO 1000 STEP 2
30 POKE W1,N,N
40 NEXT
50 FOR N=2000 TO 3000 STEP 2
60 POKE W1,N,0
70 NEXT
80 BSAVE6,RA,1,0,1000
90 BLOAD1,2000,6,RA,1002
100 FOR N=0 TO 1000 STEP 2
110 B=PEEKW(1,N+2000)

 120 IF B<>N THEN PRINT "Error address",N," data is",B
130 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-8

CALL
Syntax: CALL address

Where: address = address of assembly language program from 0 to 65535

Function: Calls an asse mbly lang uage program in external Progra m M emory

Mode: Comm and, Run

Use: CALL 16

Cards: All

DESCRIPTION

CALL instruction invokes an assembly language program. To return to Basic, you must execute a RET

instruction in the assembly language program. Original BASIC-52 code to multiply address by two and add

4100H was re mov ed.

Expressions a nd variables are n ot allowed for address ; it must be an explicit number. The assembly language

program m ust reside in externa l program m emory. R PBA SIC-52 occ upies internal progra m me mory

locations 0 through 6FFFH.

RELATED

none

EXAMPLE

CALL 0 Performs soft power up reset

RPBASIC-52 PROGRAMMING GUIDE

2-9

CARD$
Syntax: CARD $(expr)

Where : expr = 0 to 3, is the card reader to scan.

Function: Checks c ard reader for data. If presen t, returns the site code an d card num ber. If no data is present,

an error code de scribed below is returned. All data is return ed in a string form at.

Mode: Run

Use: $(0) = CARD$(N)

Cards: RPC-52, RPC-320, RPC -330

DESCRIPTION

CAR D$ returns eithe r the site code and card num ber or an error code . The site code a nd card num ber is

returned in the follow ing format:

"SSS-NNNNN"

Site codes an d card num bers have lead ing 0's. The '-' character is used a s a separator.

Ther e are 4 differe nt kind s of erro r returns possib le. The se erro rs are a lway s in a 2 c harac ter "-X " form at.

'X' is a number with the following mea nings:

1 No card number present

2 Hardware error - both data bits down

3 Parity error

4 Timeout error - some data received

A "-1" return is the most common. It indicates no card was swiped. A "-3" error indicates the card was

improperly swiped.

This c omm and w as des igned to wo rk with Senso r Engi neerin g Co. (P hone 2 03 777 7444) m odel n o 3150 3.

Cards are in a 26 bit format: 2 check sum, 8 site code, 16 data.

Up to 4 card readers may be connected to the digital port at J3. Ports A and B are used to read and control the

readers. Port C m ay be used for ad ditional opto or digital I/O . Port A mus t be configured a s an input and po rt

B an output using the CONFIG LINE 100. . . statement. Port C may be input or output as required. The high

current driver, U12, must also be installed. Each card reader is connected to digital port J3 as follows:

Card Number J3 pins

Hold D1 D0 LED

 0 8 21 19 10

 1 6 25 23 4

 2 3 22 24 1

 3 7 18 20 5

The green LED on the reader may be controlled using the LINE# command. A '0' forces the LED to green

and a '1' forces it to red. A yellow LED indicates a card has been swiped and the reader is ready to send the

information.

RPBASIC-52 PROGRAMMING GUIDE

2-10

NOTE: This command takes approximately 27 ms to process. This is because the reader sends a bit of

information ev ery 1 ms. Serial a nd timing interrup ts are processed a t the hardware level. How ever,

commands such as ONTICK and ONITR are delayed until CARD$ is finished processing the data.

RELATED

CONFIG LINE

ERROR

BAD ARGUMENT When expr > 3 or negative

EXAMPLE

The follow ing exam ple reads the ca rd. CON FIG LIN E is performe d only once. T he error code is returne d in

B if no card was swiped.

CONFIG LINE 100,12,0,255,0,0

10 STRING 200,10
100 GOSUB 1000
110 IF B = 1 THEN 100
120 PRINT "Card number: ",$(0)
130 GOTO 100

1000 $(0) = CARD$(0)
1010 IF ASC($(0),1)= 45 THEN 1040:REM See if '-'
1020 B=0
1030 RETURN
1040 B = ASC($(0),2)-48:REM Return error number
1050 $(0)= ""
1060 RETURN

RPBASIC-52 PROGRAMMING GUIDE

2-11

CBY
Syntax: CBY(expr)

Where: expr = address from 0 to 65535

Function: Reads internal program code

Mode: Comm and, run

Use: PRINT CBY(1000H)

Cards: All

DESCRIPTION

The C BY instruc tion rea ds data from p rogram mem ory spa ce in th e 8052 . expr must evalu ate to a valid

integer address of 00H through 0FFFFH (65535). Code memory is read-only.

RELATED

DBY, XBY, PEEK, POKE

ERROR

BAD ARGUMENT expr must be a v alid integer (0 through 65535).

EXAMPLE
10 FOR N=0 TO 10
20 PRINT CBY(N),
30 NEXT

>RUN
97 203 255 210 22 50 2 39 110 255 255

RPBASIC-52 PROGRAMMING GUIDE

2-12

CHR
Syntax: CHR(expr)

CHR(string,position)

Where: expr = number from 0 to 255

string = string variable

position = 1 to length of string

Function: Converts expr to ASCII character or prints string at position

Mode: Comm and, run

Use: PRINT CHR (65)

PRINT CH R($(0),1)

Cards: All

DESCRIPTION

CHR is a dual use ope rator, similar to AS C. One ve rsion converts a nu meric exp ression to an A SCII

character, allowing a variety of string manipulation operations. The second version uses CHR to print

individ ual ch aracte rs in an A SCII s tring. expr is a decimal number and truncates numbers from 0 through

65535 . There must be no s pace betw een C HR and th e left pa renthe ses or a n AR RA Y SIZ E erro r results .

Although expr can be any in teger, printable AS CII characte rs range from 20 H through 7E H (32 through 127).

The STR function may be used to m anipulate and print longer portions of strings.

RELATED

ASC, STR, STRING

ERRORS

BAD ARGUMENT expr can't be truncated to an integer (0 through 65535)

ARRAY SIZE space between CHR and left parentheses

EXAMPLE

10 STRING 200,20
20 $(1)="1234567890"
30 FOR N=64 TO 80
40 PRINT CHR(N),
50 NEXT
60 PRINT
70 FOR N=1 TO 9
80 PRINT CHR($(1),N),
90 NEXT

RUN
@ABCDEFGHIJKLMNOP
1234567890

RPBASIC-52 PROGRAMMING GUIDE

2-13

CLEAR
CLEAR S
Syntax: CLEAR

CLEAR S

Function: Sets variables to zero, clears stacks

Mode: Comm and, run

Use: CLEAR

CLEAR S

Cards: All

DESCRIPTION

The CLEA R instruction sets all variables to 0 and resets all Basic stacks. ONER R is cleared. Error trapping

must be redeclared after a CLEAR. CLEAR is generally used to clear all variables. CLEAR does not de-

alloca te me mory alloca ted to st rings by the ST RIN G inst ruction . It does c lear the conte nts of th e string s.

Data put to the stack by PU SH is cleare d. CLEA R also resets an y FOR -NEX T loops. A C -STAC K error is

returned when a NE XT is performed after a C LEAR . CLEAR also resets any GOSU B return addresses.

Use CLEA R to perform a soft reset of a program. Keep in mind that multi-tasking routines are not cleared or

reset using this command. However, if CLEAR is used as part of a mult i-tasking program (ON COM$, ON

LINE, etc .), a RETU RN w ill cause a C-S TAC K error.

CLE AR S resets the control stac k (C-STA CK) only . This stack is used in loops and subrou tines to tell it

where to return to. Use this command to branch (GOTO) out of FOR-NEXT, GOSUB-RETURN, DO-

UNTIL type structures. It can be used in emergency stop situations where nesting of loop structures is not

known. Variables are not cleared using CLEAR S.

RELATED none

EXAMPLE

10 CLEAR TICK(0)
20 ONTICK 1,1000
25 ONERR 500
30 IF TICK(0)<2.5 THEN 30
40 A=TICK(0)/0
50 IF TICK(0) < 3.3 THEN 50
60 CLEAR
70 PRINT "CLEARED"
80 GOTO 80
500 PRINT "IN ERROR"
510 ONERR 500
520 GOTO 50
1000 PRINT TICK(0),A
1010 A=A+1
1020 RETI

>RUN
 1 0
 2 1
IN ERROR
 3 2
 4 0
 5 1
 6 2

RPBASIC-52 PROGRAMMING GUIDE

2-14

The a bove e xam ple sho ws tha t ON TIC K con tinues to run a fter a C LEA R sta teme nt but v ariable s are cl eared .

If a program error were generated after the clear, the program would stop because ONERR w as cleared.

The next e xample d emonstrate s how C LEA R S can b e used in a FO R-NE XT loop . A C-ST ACK error is

returned if the CLEAR S is not in line 20.

10 FOR N=0 TO 10
20 IF N=5 THEN CLEAR S : GOTO 10
30 PRINT N
40 NEXT

>RUN
 1
 2
 3
 4
 0
 1

RPBASIC-52 PROGRAMMING GUIDE

2-15

CLEAR COM
Syntax: CLEAR COM(port)

Where: port = 0 or 1 , the seri al com mun icatio n port. port may be la rger. Check yo ur cards ma nual.

Function: Clears receiv ed characters in specified serial port bu ffer.

Mode: Run

Use: CLEAR COM (0)

Cards: All

DESCRIPTION

Received characters in the specified serial port are cleared. Characters in the transmit buffer are not affected.

RELATED

COM, COM$, GET

ERRORS

BAD SYNTAX Any parameters left out

BAD ARGUMENT When port > 1 or card limit or negative

EXAMPLE
100 CLEAR COM(1)

RPBASIC-52 PROGRAMMING GUIDE

2-16

CLEAR DISPLAY
Syntax: CLEAR DISPLAY Clears character and, if available, graphics displays.

CLEAR DISPLAY LINE Clears character line

CLEAR DISPLAY LINE(x1,y1)-(x2,y2) Clears graphics line

CLEAR DISPLAY P(x,y) Clears a point on a graphics screen

CLEAR DISPLAY C Clears characters only on graphics screen

CLEAR DISPLAY G Clears graphics only on graphics screen

Function: Clears display as directed by its options

Mode: Comm and, Run

Use: CLEAR DISPLAY Clears entire display and homes cursor

Cards: All

DESCRIPTION

Character displays may use only CLEAR DISPLAY and CLEAR DISPLAY LINE.

Characte r displays require sev eral milli-second s to clear. After CL EAR DISPL AY state ment, it is best to

execute several other RPBASIC-52 commands before using the DISPLAY command again. This will allow

the display to "catch up" to the program. Failure to do so may result in an incomplete screen clear or missing

characters/data.

NOTE: CLEAR DISPLAY LINE requires several milli-seconds to execute. LCD displays require up to 10

ms while the VF display requires 20 ms. Processing other RPBASIC-52 interrupts are delayed by

this amount of time.

The x and y graphic coordinates are the same as those specified in the DISPLAY LINE and DISPLAY P

comm ands.

RELATED

DISPLAY

ERROR

BAD SYNTAX When wrong option is used with a display.

RPBASIC-52 PROGRAMMING GUIDE

2-17

CLEAR TICK
CLEAR KEYPAD
Syntax: CLEAR TICK(timer)

Where: timer = 0 to 3

CLEAR KEYPAD

Function: Resets spe cified tick timer or c lears keypad b uffer.

Mode: Comm and, Run

Use: CLEAR TICK(1)

DIFFERENCES FRO M BASIC-52

The TICK function replaced TIME as a process clock. See TICK function for more information. KEYPAD

has no equivalent function in BASIC-52.

DESCRIPTION

There are fou r independen t tick timers that ca n be cleared ind ependently o f each other. This sta tement rese ts

any one of the four tick timers to 0.

CLE AR K EYPA D clears the k eypad buffer.

RELATED

TICK, KEYPAD

ERRORS

BAD SYNTAX Any parameters left out

BAD ARGUMENT When timer > 3 or negative

RPBASIC-52 PROGRAMMING GUIDE

2-18

COM
Syntax: COM(port)

Where: port = 0 or 1 , the seri al com mun icatio n port. port may be la rger. Check yo ur hardware

manua l.

Function: Returns the n umber of ch aracters receive d in the specified se rial port buffer.

Mode: Run

Use: A = COM (0)

Cards: All

DESCRIPTION

Use this function in conjunction with GET and COM $ to determine the number of characters to extract from

the serial buffer. A GET 0 data value can be processed with the knowledge that it is a valid character and not

an indication of an empty bu ffer.

RELATED

COM$, GET

ERRORS

BAD SYNTAX Any parameters left out

BAD ARGUMENT When port > 1 or card limit or negative

RPBASIC-52 PROGRAMMING GUIDE

2-19

COM$
Syntax: $(n) = COM$(port)

Where: port = 0 or 1 , the seri al com mun icatio n port. port may be la rger. Check yo ur hardware

manua l.

Function: Return either a ll characters or up to a <CR > in specified se rial port.

Mode: Run

Use: $(0) = COM$(0)

Cards: All

DESCRIPTION

Characte rs in the specified com municatio ns port buffer are put into the string (on the left side of the =) until

one of three con ditions occur: 1) Th ere are no m ore characters to e xtract. 2) A <C R> cha racter is

encountered. 3) The maximum number of characters specified in the STRING statement is reached.

This statement is useful when the application cannot risk using an INPUT statement. The INPUT statement

waits until a <CR> is returned before continuing execution.

Unlike the IN PUT sta tement, the va lue of all characters, ex cept a <C R> (AS CII 0DH) are returned. All

control characters and characters with ASCII values above 128 are returned.

NOTE: COM$ works only when it is assigning another string variable. A BAD SYNT AX error is returned

when it is part of a PRINT, IF-THEN, ASC, or other command or function. Use this function only as

shown in SYNTAX above.

RELATED

GET, INPUT, ON COM$

ERRORS

BAD SYNTAX Any parameters left out

BAD ARGUMENT When port > 1 or card limit or negative

EXAMPLE

The follow ing exam ple prints the num ber of characters in th e buffer as they are e ntered. Wh en 10 charac ters

have been received, the string is printed.

10 STRING 100,20 : CLEAR COM(0)
15 PRINT "Enter characters."
20 A=COM(0)
30 B=COM(0)
40 IF A=B THEN 30
50 PRINT "Number of characters in buffer:",B, CR ,
55 A=B
60 IF B<10 THEN 30
70 $(0)=COM$(0)
75 PRINT
80 PRINT "Received string =",$(0)
100 PRINT "Characters left in buffer=",COM(0)
110 GOTO 20

When you enter a <C R> before the 10th charac ter, the string to the <C R> is returned . Note that there are still

some ch aracters left in the buffer. W hen 10 chara cters are entered w ithout a <CR >, characters are put into

the strin g until th e buffe r is em ptied o r the m axim um n umb er of strin g char acters set by S TRI NG is reac hed.

To see how this works, chang e line 60 to IF B <25 TH EN 30. T he numb er of characters left in the buffer will

always be 5, unless a <CR> was entered.

RPBASIC-52 PROGRAMMING GUIDE

2-20

CONT
Syntax: CONT

Function: Continue p rogram ex ecution after a ST OP or C omm and-C

Mode: Comm and

Use: CONT

Cards: All

DESCRIPTION

CON T resum es program execution follow ing a <Ctrl-C > or STO P instruction. You can display or m odify

variables while the program is stopped, but you cannot continue a program that is modified.

RELATED

STOP, GOTO, RUN

ERROR

CAN'T CONTINUE When program was m odified.

RPBASIC-52 PROGRAMMING GUIDE

2-21

COS
Syntax: COS(expr)

Where: expr = numeric value up to ±200,000

Function: Returns the trigo nometric co sine of expr which is in radians.

Mode: Comm and, run

Use: PRINT COS (PI)

Cards: All

DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first reduce the

argument to a value that is between 0 and PI/2. the algorithm used to reduce the value will reduce accuracy

when value is large. To maintain accuracy, keep the arguments for trig functions as small as possible.

ERROR

ARITH. UNDERFLOW value or result is less than RPBASIC-52's smallest floating-point value of ±1E-127

ARITH. OVERFLOW value or result is greater than RPBASIC-52's largest floating-point value of

±.9999999E+127

DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES

10 PRINT SIN(PI/2),COS(10*PI),TAN(8*PI/4)
20 PRINT ATN(PI)

>run

 1 1 0
 1.2626272

RPBASIC-52 PROGRAMMING GUIDE

2-22

CR
Syntax: PRINT CR,

Function: Used with P RIN T. Sen ds a ca rriage r eturn w ithout a line fee d.

Mode: Comm and, run

Use: PRINT CR,

Cards: All

DESCRIPTION

Used to update a line on a serial console device. A comma is necessary to prevent the usual line feed from

terminating the PRINT instruction.

RELATED

PRINT

EXAMPLE

100 PRINT TICK(0),CR,
110 GOTO 10

>run
 3.242

The number is continuously printed at the same position.

RPBASIC-52 PROGRAMMING GUIDE

2-23

COUNT (statement)

Syntax: COUNT counter ,data

Where: counter = 0 or 1

data = 0 to 16777215

Function: Writes data to spec ified up /dow n coun ter.

Mode: Comm and, Run

Use: CO UN T 0,A

Cards: RPC-320, RPC-330

DESCRIPTION

Use this command to write 3 data bytes to the preset register (PR) in the LSI 7166 counter. This command

does not transfer PR to the counter (CNTR). To do this, execute:

LINEB 6,X,8

Where: X = 1 for counter 0, 3 for counter 1.

NOTE: The sign of data is ignor ed. It ca n be a p ositive or nega tive nu mbe r. Wh en neg ative, data is simply

treate d as a p ositive num ber.

Decim al portion of data is ignored. For exam ple, if data = 100.99999 , 100 is loaded into the counter.

See your hardware manual for more information about using the LSI 7166 chip.

Software co unters 4 - 11 cann ot be set.

RELATED

COUN T (function)

ERROR

BAD ARGUMENT When counter <> 0 or data out of range.

EXAMPLE

10 COUNT 0,124735

RPBASIC-52 PROGRAMMING GUIDE

2-24

COUNT (function)

Syntax: A = COUNT(counter)

Where: counter = 0 - 1, or 4 - 11

Function: Reads a multimode hardware or software counter

Mode: Comm and, Run

Use: A = COU NT(0)

Cards: RPC-320, RPC-330

DESCRIPTION

RPBASIC-52 recognizes a hardware and software counter. The hardware counter is 24 bits wide from a LSI

7166 chip. (Your board may use a different kind. Please check your hardware manual.) The RPC-320 has

one of these and the RPC -330 has two. Additionally, there are 8 software counters on all cards.

counter 0 and 1 re t rieve a 24 b it (3 byte) number f rom the LSI 7166 mult imode counter IC. A number f rom 0

to 16777215 is returned. See your hardware manual for more information about using the LSI 7166 chip.

Eight software counters, set by the ON COUNT comm and, return a count from 0 to 65535. Software counter

is 4 to 11. A software count is incremented when a l ine goes low.

RELATED

COUNT (statement) , ON COUNT

ERROR

BAD ARGUMENT When counter is out of range

EXAMPLE

The following example sets up line 3 as a software counter input. A count is printed once a second. A count

is incre men ted by bringin g line 3 low m ome ntarily .

10 ON COUNT4,3
20 ONTICK 1,1000
30 IDLE
40 GOTO 30

1000 PRINT COUNT(4)
1010 RETI

ON COU NT can be configured to generate an interrupt when a specified number of counts is reached. See

COUNT MULTITASKING under MU LTITA SKING CON STRU CTS a t the beginning of this m anual.

RPBASIC-52 PROGRAMMING GUIDE

2-25

DATA
Syntax: DATA expr [,expr,...]

Where: expr = numeric data.

Function: It is an expression l ist used by READ.

Mode: Run

Use: DATA 23.4,17,3.2,PI*3

Cards: All

DESCRIPTION

Elements of a DATA statement are sequentially retrieved by the READ instruction. Multiple DATA

expressions on a single program line must be separated by commas. There must be no spaces between expr

and the comm as.

See RES TORE for more information and exam ples.

RELATED

READ, RESTORE

RPBASIC-52 PROGRAMMING GUIDE

2-26

DATE (function)

Syntax: A = DATE(n)

Where: n = 0 to 3

0 = year (last two digits)

1 = mon th

2 = day

3 = day of week

Function: Returns the month, day, day of week, or year from the optional real time clock

Mode: Comm and, Run

Use: A=D ATE (2) Returns day of month

Cards: All. Note exceptions for RPC-52.

DESCRIPTION

A DS1216DM must be in the RAM socket. Consult your hardware manual for location. A numerical value

of the month, day, or year is returned. The program under the TIME function is used to convert numerical

date to a string. Substitute DATE for TIME in the program. STR function 10 also converts a number to a

string.

A HAR DWA RE error is returned if the RTC is missing or bad. Use the ONERR construct to trap a defective

DS1216DM . Hardware error code at address 101H is 50.

Day of we ek is re turned only on cards w hich u se a D S121 6DM clock mod ule. (T his exc ludes t he R PC-5 2.)

RELATED

DATE (command), TIME

ERRORS

BAD ARGUMENT When n out of range or negative

HARDWARE RTC module missing or bad

EXAMPLE

100 PRINT "Time: ",
110 FOR N=0 TO 2
120 PRINT TIME(N),
130 NEXT
140 PRINT " Date: ",
150 FOR N=0 TO 3
160 PRINT DATE(N),
170 NEXT
180 PRINT CR,
190 GOTO 100

run

Time: 13 24 12 Date: 94 11 14 3

RPBASIC-52 PROGRAMMING GUIDE

2-27

DATE (statement)

Syntax: DATE year,month,day[,day of week]

Where: year = 0 to 99

month = 1 to 12

day = 1 to 31

day of week = 1 to 7

Function: Sets the date to the real time clock

Mode: Comm and, Run

Use: DATE 96,11,17 Sets date to November 17, 1996

Cards: All

DESCRIPTION

Leap yea r is automatica lly set. Tests for day check limits of 1 to 31. It does not check for a valid day in a

month. You could set 2-31-96 as a valid date.

This com mand m ust be execute d first to turn on the clock m odule. DA TE and T IME func tions or the TIM E

command will not work otherwise.

day of week can on ly be se t on ca rds usin g a DS 1216D M typ e cloc k mo dule. (T his exc ludes t he R PC-5 2.)

RELATED

DAT E (function), TIM E

ERRORS

BAD ARGUMENT When month, day, or year is out of range.

HARDWARE Clock module missing or bad.

RPBASIC-52 PROGRAMMING GUIDE

2-28

DBY
Syntax: A=DBY(expr)

 DBY(expr)=variable

Where: expr = 0 to 255

variable = 0 to 255

Function: Read/write internal data memory.

Mode: Comm and, run

Use: DBY(0F0H) = 45H

A=DB Y(100)

Cards: All

DESCRIPTION

The D BY instruc tion ret rieves or assig ns a va lue to th e 8052 interna l data m emo ry. expr and variable must

both must be between 0 and 255 since there are only 256 internal memory locations and one byte can only be

between 0 and 255.

RPBAS IC-52 uses many internal memory locations for its own use. Change internal memory with caution or

Basic may malfunction. Locations 1BH through 21H may be used in any way you wish.

RELATED

CBY, XBY

ERROR

BAD ARGUMENT Invalid expr value, such as DBY(256) or attempt to assign an invalid value to a

DBY(expr), such as DBY(18H)=1000.

EXAMPLE

100 DBY(1EH) = 234

110 PRINT DBY(1EH)

>run

 234

RPBASIC-52 PROGRAMMING GUIDE

2-29

DIM
Syntax: DIM name(size)[,name(size)...]

Where: name = Any valid variable name

size = 1 to 255 elem ents

Function: Reserves storage for single-dimension array.

Mode: Comm and, run

Use: DIM FLOW(200) : REM dimensions a 200 element array called FLOW

Cards: All

DESCRIPTION

The maxim um num ber of array elements is 255, accessed as name(0) through name(254). CLEAR, NEW , or

RU N com man ds de-a llocat e all arr ay stor age. T he def ault siz e of und eclare d array s is 10 (i.e . 11 elem ents).

An array cannot be redimensioned after it has been dimensioned. Memory required for an array is ((integer

size + 1) * 6). Array A(99) requires 600 bytes of memory. Available memory typically limits the size and

number of dimen sioned arrays.

RELATED

STRING, CLEAR

ERROR

ARRAY SIZE When size >255

EXAMPLE

10 DIM FLOW(200), LEVEL(200)
20 ONTICK 1,1000
30 IF PTR < 200 THEN 30
40 ONTICK 0,1000
50 FOR N=0 TO 199
60 PRINT FLOW(N),LEVEL(N)
70 NEXT
80 END
1000 FLOW(PTR)=AIN(0)
1010 LEVEL(PTR)=AIN(1)
1020 PTR=PTR+1
1030 RETI

RPBASIC-52 PROGRAMMING GUIDE

2-30

DISPLAY
Syntax: DISPLAY option[,option][,option]

Where: option is one or more of the following

"string" Prints to display

$(n) Prints to display

(row,col[,cursor]) Positions cursor an d turns it on or off

data Puts data values to display

CR Prints a carriage return to the display

LINE Puts a line to a graphics display

P Puts a point to a graphics display

ON [G,C] Enables character, graphic, or both displays

OFF [G,C] Turns off character, graphic, or both displays

Function: Writes information to display.

Mode: Comm and, Run

Use: DISPLAY (1,2,OFF),28,"Name: ",$(0)

Cards: All

DESCRIPTION

DISPLAY has many options, some of which cannot be used with all displays. Graphics commands (LINE, P,

C, and G) a re only valid w ith the LCD -5003. An error is returne d when the y are used w ith character only

displays.

Strings and curso r positioning ma y be placed in any order on the c omm and line with the exception of data .

The following example shows how some options can be combined in a program line.

100 DISPLAY (1,0,ON),"Batch no.: ",$(0),(2,0),"Enter process no.:"

The cursor is po sitioned at line 1, first position (0) and the cursor is turned on . The string "Ba tch no.: " is

printed. The string in $(0) is then printed. The cursor is then re-positioned to line 2 (third line down), first

position. The string "E nter process no.:" is then printed. The curso r is positioned just after the ':' characte r.

DISPLAY does not format text like PRINT. SPC, TAB, and USING commands return an error. Use STR

function 10 to format numbers.

NOTE: Unlik e the P RIN T com man d and s erial po rts, DIS PLA Y doe s not bu ffer sen ding d ata to th e displ ay.

Due to displ ay spe ed lim itation s, it ma y take up to 1 m s to wr ite 1 ch aracte r or data point to a scree n.

Long strings or l ines may take several mill i-seconds. Time sensit ive interrupts, such as ONTICK,

can be "m issed" if printing is long an d the tick interval is very short. In these situations, it is best to

break up any DISPL AY com mand into smaller sizes.

The following paragraphs explain each display option.

"string" is any quoted text used in PRINT statements.

DISPLAY "Hello world"

$(n) is any string array. Variable numbers must be printed from this array. The program in TIME function

shows how to convert a number into a string.

DISPLAY $(0)

RPBASIC-52 PROGRAMMING GUIDE

2-31

(row,col,[,cursor]) positions the cursor and, optionally, turns it ON or OFF. This option affects the character

cursor position only. T he row and collum alw ays start at 0,0, which is the upper left corner o f the screen. If

row or col exceed the d isplays limits, a B AD A RGU MEN T error is returned. Th e optional cursor is turned

on or off using ON or OFF.

DISPLAY (1,5)

DISPLAY (2,0,OFF)

data is byte information written to the display. Functionally, it is equivalent to CHR$(n) found in other

Basi cs. data can be used to control additional features of a display not normally available. For example, the

vacu um flo resce nt disp lay brig htness can be dimm ed to m inim um b y exec uting D ISPL AY 28.

NOTE: data does not update cursor position. The display may act 'unusual' when printing characters or

strings. The best way to solve this problem is to position the cursor before resuming string displaying.

NOTE: data should not be used with the graphics display. Character values are offset by 20H. For example,

the A SCII v alue fo r 'A' is 41H . The so ftware subtra cts 20H from t his num ber be fore se nding it to the d isplay .

CR simply positions the cursor at the beginning of the current line.

DISPLAY CR

The following options are valid on the LCD5003 display only.

LINE draw s a line on a graphics display. Its syntax is:

DISPLAY LINE (x1,y1)-(x2,y2)

Where: x1,x2 = 0 to 159

y1,y2 = 0 to 127

The L INE option is optim ized fo r high sp eed. H owe ver, ne arly ve rtical lin es wil l take m uch lo nger to draw .

A line is erased using the CLEAR DISPLAY LINE (x1,y1)-(x2,y2) command.

P puts a single point to a graphics display. Its syntax is:

DISPLAY P(x,y)

Where: x = 0 to 159

y = 0 to 127

These values are valid for LCD5003 display only.

A line is erased using the CLEAR DISPLAY P(x,y) command.

ON enables character, graphics, or both displays. Three syntaxes possible are:

DISPLAY ON Turns on both character and graphics displays.

DISPLAY ON G Turns on graphic display only.

DISPLAY ON C Turns on character display only.

Power on default is both graphics and character display ON. Turning on character or graphic does not affect

the other. In other words, you could turn the character display ON and OFF without affecting the graphics

display.

OFF disables character, graphics or both displays. Three syntaxes possible are:

RPBASIC-52 PROGRAMMING GUIDE

2-32

DISPLAY OFF Turns off both character and graphics displays.

DISPLAY OFF G Turns off graphic display only.

DISPLAY OFF C Turns off character display only.

Turning off the character display does not turn off graphics.

Using D ISPLA Y ON /OFF [option] allows you to sw itch betwee n character an d graphics display s. It is

possible to upda te both graphics a nd character sc reens even if they are off.

RELATED

CONFIG DISPLAY

ERROR

BAD SYNTAX When option is invalid

RPBASIC-52 PROGRAMMING GUIDE

2-33

DO-UNTIL
Syntax: DO

{program statements}

UNTIL relational expr

Where: relational expr is any logical evaluation such as =, <, >, etc.

Function: Executes a number of program statements a relational expression is true.

Mode: Run

Use: 100 A=0 : DO : A=A+1 : PRINT A : UNT IL A=4 : PRINT "Done"

Cards: All

DESCRIPTION

This statement always executes at least once. DO-UNTIL loops may be nested. This loop may be exited

without meeting relational expr by executing a CLE AR or C LEA R S statem ent.

This statement always executes to UNTIL once. When relational expr is evaluated and if it is false, program

flow b ranch es bac k to D O. If true , progra m res ume s at the next sta teme nt after UN TIL.

When there are no {pro gram statem ents} betw een DO and UN TIL, and {re lational expr} is false, the "loop"

will repeat forever, or until a <ctrl-c> is typed at the console.

DO-UNT IL and DO-WH ILE loops can be nested.

RELATED

DO-WHILE, FOR-TO-NEXT-STEP

ERROR

BAD SYNTAX When relational expr is omitted

EXAMPLE

The following program stays in a DO-UNTIL loop until a line has changed.

10 ON LINE 0,0,500
20 DO
30 UNTIL C=1
40 PRINT "Line 0 changed. Is now a",line(0)
50 C=0
60 GOTO 20
500 C=1
510 RETURN

>run
Line 0 changed. Is now a 0
Line 0 changed. Is now a 1
Line 0 changed. Is now a 0

RPBASIC-52 PROGRAMMING GUIDE

2-34

DO-WHILE
Syntax: DO

{program stateme nts}

WH ILE {relation al expr}

Function: Executes { program state ments} w hile {relational expr} is true .

Mode: Run

Use: 100 CLEAR TICK(0) : DO : PRINT TICK(0) : WHILE TICK(0)<10

Cards: All

DESCRIPTION

The {prog ram statem ents} betw een DO and W HILE a re executed o nce, regardless of the {relational expr}

result. At WH ILE the {re lational expr} is evaluated. If true, all {program statements} are executed again,

and the test is repeated. If false, execution continues at the program statement after WHILE. DO-WHILE

and DO-UNT IL loops can be nested.

RELATED

DO-UNTIL, FOR-TO-STEP-NEXT

EXAMPLE

The following program stays in a DO-UNTIL loop until a line has changed.

10 ON LINE 0,0,500
20 DO
30 WHILE C=0
40 PRINT "Line 0 changed. Is now a",line(0)
50 C=0
60 GOTO 20
500 C=1
510 RETURN

>run
Line 0 changed. Is now a 0
Line 0 changed. Is now a 1
Line 0 changed. Is now a 0

RPBASIC-52 PROGRAMMING GUIDE

2-35

END
Syntax: END

Function: Terminates program execution and returns to command mode.

Mode: Run

Use: 65000 END

Cards: All

DESCRIPTION

The EN D instruction term inates Basic program ex ecution. If no EN D instruction is use d at the end of a

program, the last instruction automatically terminates the program. Use END after the body of your program

and prior to any subroutines.

Without an EN D after the main body of your B asic program and prior to any subroutine program lines,

RPBASIC-52 will attempt to execute any subroutines at the end of your program as if they were a

continuation of the main progra m. This w ill generate a C -STAC K error whe never a RE TUR N is

encountered.

RELATED

CONT, STOP, GOSUB, ON-GOSUB

ERROR

CAN'T CONTINUE The CON T instruction cannot follow an END instruction.

EXAMPLE

10 GOSUB 100
20 END
100 PRINT PI
110 RETURN

>run

 3.1415926

If you remove line 20, a C-Stack error is returned.

RPBASIC-52 PROGRAMMING GUIDE

2-36

EXECUTE
Syntax: EXECUTE [segme nt]

Where: segment = program to execute

Function: Loads and runs program specified by segment.

Mode: COMMAND, RUN

Use: EXECUTE n

Cards: RPC-320, RPC-330

DESCRIPTION

Com man d gets a progra m from the flas h EPR OM and ex ecute s it. segment specie s the pro gram to exe cute.

The program saved by the S AVE n comm and is execute d. The range o f segment depends upon the flash

EPROM size. See the SAVE comm and for more information.

The effect of E XEC UTE is the same a s typing LO AD n, then RUN . The difference is E XEC UTE is part of a

program.

NOTE: Every time EX ECUT E is run, all variables and strings are reset. Variables and strings CANNOT be

passed from one program to another except through peeking and poking to RAM. ONTIC K and

ONITR interrupts are cleared as is ONERR.

String and numeric data can be saved for use by other programs using any of the POKE and PEEK

statemen ts. Data can be POKE d in to space ab ove MT OP (7E0 0H in a 32K RAM system) or into m emory

segmen t 1 (128K R AM) o r 1-7 (512K R AM).

Some parameters are not cleared by running EXECUTE. These are the tick timers (TICK), serial

communication buffers, and data saved by POKEing. No hardware conditions are reset. No parameters set

by any CO NFIG sta tement are reset.

Loading and executing time depend upon program length. 0.22 seconds is required for clearing variables and

resettin g Ba sic. Ad d to this time the ac tual tra nsfer tim e. Tran sfer tim e is at a rate of 5 0,000 b ytes/se cond.

A 20K program requires about 0.4 seconds to begin running after the EXECU TE statement is finished.

RELATED

LOAD, SAVE

ERROR

BAD A RGUM ENT when segment is out of range.

EXAMPLE

The first lines were saved to program segment 0. The second set to 1.

10 PRINT "Program number 0"
20 EXECUTE 1

>save 0
10 PRINT "Program number 1"
20 EXECUTE 0

>save 1
>run
Program number 0
Program number 1
Program number 0

RPBASIC-52 PROGRAMMING GUIDE

2-37

EXP
Syntax: EXP(expr)

Function: Raises "e" (2.71828) to the pow er of expr

Mode: Comm and, run

Use: PRINT EXP(C OS(1))

Cards: All

DESCRIPTION

This function retu rns the result of the num ber Q (2.718282) raised to the power given by expr. This function is

very com putation time intensive. Sm all values of expr take about 5 milli-seconds to calculate while larger

ones (near 250) require nearly 0.2 seconds. Avoid using this function in tight control or time intensive

applications.

ERROR

BAD ARGUMENT When result of expr > 256

RPBASIC-52 PROGRAMMING GUIDE

2-38

FOR-TO-STEP-NEXT
Syntax: FOR variable =initial index expr TO index limit expr [STEP step expr]

progra m statem ents

NEXT [variable]

Where: variable = any valid variable symbol

initial index expr = starting value assigned to variable

index limit expr = ending va lue of variable

step expr = optional increment or decrement to variable when repeating a loop

Function: Looping structure useful for executing a sequence of instructions a numb er of times.

Mode: Run, command

Use: FOR A=0 to 4000 STEP 200 : AOT 0,A : NEXT

Cards: All

DESCRIPTION

The FO R-TO -STEP -NEX T instruction is a loop structure com mon to m any high leve l languages. It is used to

perform progra m statem ents a num ber of tim es.

variable is a loop counter initialized to initial index expr at the start of the loop. A n umber of program

statemen ts are executed until NEX T is encoun tered. At this point the v alue of step expr is added to the value

of variable . The result ing new variable value is com pared to the valu e of index limit expr. If the new value

of variable value is less than or e qual to the value of index limit expr, all progra m statem ents are executed

again , and the test is re peate d.

progra m statem ents are always e xecuted at lea st once. If step expr is larger than index limit expr, the loop

executes only once.

STEP is optional. Wh en omitted, it defa ults to 1. The value of step expr may be positive or negative.

FOR -NE XT l oops m ay be i nside o ther FO R-N EXT loops. variable following N EXT is optional.

There are tw o ways to bre ak out of a for next loo p and still main tain the control stack . The first is to execute

a CLEAR S command. This command also clears any subroutine return locations and DO-WHILE, DO-

UNT IL loops. Ano ther is to set variable to a high value within program statements. When a program

continuously bre aks out of a FO R-NE XT loop and re-declares a new loop, a C -Stack error is even tually

returned.

RELATED

DO-UNTIL, DO-WHILE

ERROR

C-STACK NEXT without a corresponding FOR. This error can also appear if a number of FOR-NEXT

loops were set up but were illegally branched out of or re-declared.

RPBASIC-52 PROGRAMMING GUIDE

2-39

EXAMPLE

The following example gets characters from the receive buffer and generates a checksum. A string of 10

characters is entered at com port 0.

10 STRING 200,20
20 PRINT "Type in 10 characters. Characters are not echoed"
30 IF COM(0) < 10 THEN 30
40 $(0) = com$(0)
50 CKSUM = 0
60 FOR N = 1 to STR(0,$(0))
70 CKSUM = CKSUM + ASC($(0),N)
80 NEXT
90 PRINT "Checksum of incoming string:",CKSUM

>run

Type in 10 characters. Characters are not echoed
(1234567890 are entered at the keyboard)
Checksum of incoming string: 525

RPBASIC-52 PROGRAMMING GUIDE

2-40

FREE
Syntax: FREE

Function: Returns the bytes of available in program RAM

Mode: Comm and, run

Use: PRINT FREE

Cards: All

DESCRIPTION

FREE returns how m any bytes of R AM a re available to the p rogram an d Basic va riables. It does not return

the amount of expanded RAM in 128K or 512K RAM systems. The amount of free memory is determined by

the following formula:

FREE = MT OP - LE N - system mem ory

"system memory" on cards with two serial ports is 1791. Add 512 bytes for any additional serial ports on a

card.

RELATED

LEN

ERROR

BAD SYNTAX Attempt to assign a value to FREE

RPBASIC-52 PROGRAMMING GUIDE

2-41

FREQ (Function)

Syntax: FREQ(channel)

Where : channel = 0 or 1, depending upon card.

Function: Returns a counter value

Mode: Comm and, run

Use: PRINT FR EQ(0)

Cards: RPC-210, RPC-320, RPC-330 (RPC-210 and -320 are channel 0 only)

DESCRIPTION

This command returns a frequency, or number of pulses over a period of time. FREQ returns the latest value

from the hardware counter. FREQ does not actually read from the counter. The operating system reads the

counter at set interva ls defined by C ONF IG FRE Q and stores th em for retrieval by this function. This

function is used to read analog input modules made by Greyhill, Dutec, and others. Equivalent 15+ bit analog

input readings are theoretically possible.

FREQ function returns 0 until set up by CONFIG FREQ.

The latest FR EQ valu e remains in mem ory until updated b y the RPB ASIC-5 2 operating system . The update

interva l is dete rmine d by the CO NFIG FRE Q com man d.

Avoid using COUNT (n) when using this command. It is possible values returned by COUN T(n) could be

wrong.

Hardware counters (LSI 7166) are used to count pulses. CONFIG FRE Q defines the time interval between

readings. The operating system reads and resets the counters every time interval. Thus, you can measure a

frequency in 1/10 second. The result is multiplied by 10 to obtain the "true" frequency. Errors in this case

are also multiplied by 10. The best rule is to set the time interval in CONFIG FREQ for as long of a period as

possible (up to 1.275 s econds) to get the most stable a nd accurate re adings. Shorter interva ls make co unts

appear less stable.

Best resolution is below 80 Khz at a measurement interval of 1/2 second. Between 80 Khz and about 190

Khz counts can easily vary by ±2. From 190 Khz to about 1 Mhz, counts vary by up to ±10. Above 1 Mhz,

counts vary much more. Counting to 20 Mhz is possible.

You will ha ve to p lay w ith the m easure men t interv al, base d on the input fre quenc y and d esired stabilit y.

Averaging the counts helps stabilize the readings.

There are several sources of errors and instability. The time interval between counter readings is based on the

system tick tim er, which is base d on the crystal. Ac curacy is usually better than 0.01% . The error is very

noticeable at higher (> 200Khz) frequencies. Another potential source of error is the program or functions

you may be executing. Some functions, such as AIN, turn off all interrupts for a "short" period of time (50

micro-seconds). What this means is, if it is time for the operating system to read the counters, the reading

will be delayed by up to 50 micro-seconds. If the frequency is very high, addit ional counts are read. No

counts are missed, so averaging readings helps to reduce errors.

Counts are missed when the frequency is above 1 Mhz (500 Khz on the RPC-210). This is because of CPU

processing time between latching and reset ing the counter (about 1 - 2 micro-seconds) . Increas ing the time

interval be tween readings he lps to reduce er rors but does not e liminate them.

RELATED

CONFIG FREQ

ERROR

RPBASIC-52 PROGRAMMING GUIDE

2-42

BAD DATA When channel is out of range for a card.

EXAMPLE

The follow ing exam ple sets up frequen cy multitaskin g and prints the co unts received in a time interval.

10 LINEB 6,1,32
20 LINEB 6,1,72 : REM Reset counter and enable inputs
30 CONFIG FREQ 0,200 : REM Get count every second (5 ms * 200)
40 C = 5/56000 : REM Constant using Greyhill module. 5V / 56000Hz = V/Hz
50 CLEAR TICK(0)
60 IF TICK(0) < 1 THEN 40 : REM Wait for a second
70 A = FREQ(0) : REM Get frequency
80 V = (A-14400) * C : REM Multiply by constant to get Voltage
90 PRINT "Voltage = ",V, "Frequency =",A
100 GOTO 50

You may need to add a 1K ohm pull up resistor from the output of the Greyhill module to the input of the

counter. The inp ut rise time shou ld be 1 micro -second or faster.

RPBASIC-52 PROGRAMMING GUIDE

2-43

GET
Syntax: A = GET

Function: Gets chara cter from buffer.

Mode: Run

Use: A = GET

Cards: All

DESCRIPTION

GET is similar to INKEY$ in other Basic languages. GET returns the ASCII value of the character rather

than the string. This feature makes it useful when receiving binary information.

To rec eive a contro l-C va lue (3), s et bit 1, a ddress 26H.

DB Y(38) = DB Y(38) .OR . 1

This disables program breaks when a <Ctrl-C> is received.

GET can extract cha racters from C OM 0 or COM 1. The UI 0 or U I 1 comm and is execute d to get characte rs

from an alterna te serial port.

The AS CII value 0 is a v alid numb er. Unfortunately, this va lue can indica te that there are no c haracters

available. If your applic ation program expects to rece ive ASC II 0's, the following program will wait until if

there are characters in the buffer to ensure a value of 0 is indeed valid.

100 IF COM(0) = 0 THEN 100
110 A = GET

Line 100 loops until there is a character in the buffer. Line 110 extracts the character from the buffer. When

A = 0, zero is the ASCII value.

RELATED

COM , COM $, INPUT , UI 1, UI 0

EXAMPLE

The fo llowin g progr am ta kes ch aracte rs one a t a tim e from the bu ffer and puts the m into expan ded m emo ry.

128K or more of RAM is needed.

100 IF COM(0) = 0 THEN 100
110 A=GET
120 POKEB 1,X,A
130 X=X+1
140 GOTO 100

RPBASIC-52 PROGRAMMING GUIDE

2-44

GOSUB
Syntax: GOSUB line number

...

line number program state ments

RETURN

Function: Transfers program control to the specified line number. The RETURN causes execution to resume at

the program statement after GOSUB.

Mode: Run

Use: 100 FOR A=1 to 20 : GOSUB 200 : NEXT A : END

200 PRINT A, SQR(A) : RETURN

Cards: All

DESCRIPTION

GOSUB provides subroutine capability within RPBASIC-52 programs. A subroutine may be called from

within another subroutine.

GOS UB sav es the location of the program state ment after G OSU B on the C -Stack and im mediately transfers

program control to line number. When a RETURN is encountered, program execution resumes at program

statement after GOSUB.

GOSUB s can be nested. The number nesting is limited by available C-Stack RAM, but is usually enough for

at least 30 routines.

RELATED

GOTO, ON-GOTO, ON-GOSUB

ERROR

C-STACK An unexpected RETURN is encountered or the number of subroutines executed was excessive.

EXAMPLE

10 GOSUB 100
20 PRINT "Back from routine"
30 END
100 PRINT "In subroutine"
110 RETURN

>run

In subroutine
Back from routine

RPBASIC-52 PROGRAMMING GUIDE

2-45

GOTO
Syntax: GOTO line number

Function: Routes program execution to line number

Mode: Comm and, run

Use: GOTO 100

Cards: All

DESCRIPTION

When line number is the line num ber of an execu table statem ent, that stateme nt and those follow ing are

executed. G OTO can be used in the comm and mod e to re-enter a program at a desired point.

RELATED

GOSUB, ON-GOTO, ON-GOSUB, RUN

ERROR

INVALID LINE NUMBER Specified line nu mber doe s not exist.

EXAMPLE

100 PRINT "At line 100"
200 GOTO 100

RPBASIC-52 PROGRAMMING GUIDE

2-46

IDLE
Syntax: IDLE [option]

Where: option specifies a card dependent mode.

Function: Suspends p rogram ex ecution and w aits for an interrupt.

Mode: RUN

Use: IDLE

Cards: All. Variations a re card depen dent.

DESCRIPTION

Different cards have a variety of parameters. Refer to your hardware manual for more information.

Use this command to suspend program execution and wait for an interrupt. An interrupt is from an ONTICK,

ONITR, ON COUN T, ON CO M$, ON LINE , or ON KEYPA D comm and.

RELATED none

ERRORS none

EXAMPLE

10 ONITR 0,1000
.

. Other initialization

.

200 IDLE Wait for interrupt
.

. On exit from idle, continue program

.

1000 RETI Simply ex it

RPBASIC-52 PROGRAMMING GUIDE

2-47

IF THEN ELSE
Syntax: IF expr [THEN] statement(s) [ELSE statement(s)]

Where: expr = any logica l evaluation or varia ble

statement(s) = any num ber of Basic sta tements

Function: When expr is TRUE (not zero), the instruction following THEN is executed, otherwise the

instruction following ELSE is executed.

Mode: Run

Use: 10 IF A<>B THEN PRINT "A=B" ELSE PRINT "A<>B"

Cards: All

DESCRIPTION

THE N is implied by IF. You m ay omit T HEN . ELSE is o ptional. It is included w hen an "eithe r - or"

situation is encountered.

In the case of multiple statements per line following an IF-THEN-EL SE, Basic executes the following

statemen ts only if expr was true. This e nables you to c onditionally exe cute multiple statements w ith a single

expr t es t. Remember th is applies only to Basic s ta tements separa ted by the {:} de l imi ter and on the same

program line.

expr can be either a logical evaluation (=, <, >, <>, .AND., .OR., .XOR., or .NOT.) or a variable. Using a

simple variable as a flag can speed up program execution. The following examples illustrate different

execution speeds.

10 A = 1000
20 CLEAR TICK(0)
30 IF A<>0 THEN A=A-1 : GOTO 30
40 PRINT TICK(0)

The abov e program takes about 1 se cond to exec ute, which transla tes to about 1 m s/ line for this exam ple. If

line 30 were re-written as:

30 IF A THEN A=A-1 : GOTO 30

Execution time is reduced by about 20% by taking away the "<>0" evaluation.

RELATED none

ERRORS none

EXAMPLE

10 A = 1
20 IF A=0 THEN PRINT "A is 0" ELSE PRINT "A is non-zero"

>run

Is non-zero

RPBASIC-52 PROGRAMMING GUIDE

2-48

INPUT
Syntax: INPUT ["prompt text"] [,] [,variable ...]

Where: prompt text = optional text

variable = list of variables to assign

Function: Program p auses to receive data entered from the console inpu t.

Mode: Run

Use: 100 INPUT "Enter batch number",$(0)

Cards: All

DESCRIPTION

INPUT brings in numeric and string data from the console serial port during execution. Variables are string,

numeric, or bo th. Variables are se parated by a c omm a. Optional prompt text must be enc losed i n quot es.

When an optional com ma prece des the first variable, the question mark prompt character is suppressed and

data entry is on the same line as prompt text.

Multiple numeric data may be entered by separating individual values with commas and using <cr> on the

last on e. Or, ea ch dat a entry may be ent ered u sing a < cr>.

Strings must be entered with a carriage return.

If you do not enter enough data or the correct type, Basic sends the message TRY AG AIN and prompt text

after which yo u must ente r all the data. If you enter too many characters for the size of al located STRING

memory, or more numeric values than were requested, Basic discards the extra data, emits the message

EXTRA IGNORE D, and continues execution.

There are tw o major differen ces betwe en RPB ASIC-5 2 and BA SIC-52 w hile using INP UT. Input ch aracters

are buffered. The operator or device may "type ahead" into the buffer and INPUT will respond just that much

quick er. The back- space chara cter (A SCII v alue 0 8) is rec ogniz ed in th e sam e wa y as the delete key w as.

This ma kes editing progra ms m ore convenie nt.

RELATED

COM$, GET, STRING

ERRORS none

EXAMPLE

10 STRING 200,20
20 INPUT "Enter a number, string, and 2 more numbers: ",A,$(0),B,C
30 PRINT "String:",$(0)
40 PRINT "Numbers:",A,B,C

>run

Enter a number, string, and 2 more numbers: 4,Bob
?7,9
String:Bob
4 7 9

RPBASIC-52 PROGRAMMING GUIDE

2-49

INT
Syntax: INT(expr)

Function: Returns an in teger portion of expr

Mode: Comm and, run

Use: PRINT INT(PI)

Cards: All

DESCRIPTION

The integer p ortion is stored as a floating point numb er.

RELATED none

ERRORS none

EXAMPLE
print int(45.67)
 45

print int(-16.9999)
-16

To produce true rounding to the closest whole number, use the following formula:

A = INT(B+0.5)

RPBASIC-52 PROGRAMMING GUIDE

2-50

KEYPAD
Syntax: A = KEYPAD(function)

Where: function = 0 or 1

0 = return keypad position pressed from buffer

1 = returns number of keys in buffer

Function: Returns key pad pressed po sition or numb er of keys in keyp ad buffer.

Mode: Comm and, Run

Use: A = KEY PAD(0) Returns a keypad position

Cards: All

DESCRIPTION

The keypad is automatically scanned, debounced, and placed in an 8 position buffer in the background. Key

presses are buffered until retrieved by the KEYPAD(0) function. Keypad positions are returned as a number

from 1 to 24. W hen a 0 is returned , there are no m ore keys in the bu ffer.

Position numbers 1 - 4 correspond to the top row while positions 12 - 16 are the bottom row of keys on the

KP-1 and KP-3 keypads. Thus, the letter 'B' on the KP-1 corresponds to position 8.

Use CL EAR KEY PAD to remove a ll characters from the buffer.

ON KE YPAD branches to a subroutine when a key is pressed. (check card for availability)

RELATED

CLEAR KEYPAD, ON KEYPAD

ERROR

BAD DATA When function is out of range.

EXAMPLE

The following program prints out the keypad position as a key is pressed.

10 CLEAR KEYPAD
20 DO
30 UNTIL KEYPAD(1) = 1
40 PRINT KEYPAD(0)
50 GOTO 20

RPBASIC-52 PROGRAMMING GUIDE

2-51

LD@
Syntax: LD@ expr

Where: expr = valid integer address of 00H through 0FFFFH (65535)

Function: Retrieves a floating-point number previously saved with ST@

Mode: Comm and, run

Use: LD@ 3000

Cards: All

DESCRIPTION

LD@ is used in conjunction with PUSH, POP, and ST@ . Use these commands to save and retrieve floating

poin t numbers to p rogram RAM.

NOTE: LD@ and ST@ cannot use ex tended RA M. Only se gment 0 R AM (u sed for running B asic

programs) is used. Use PEEKF and POKEF commands to access this memory.

WARNING: Wh en 128 K and 512K RA M are installe d, all of m emo ry is cle ared o n pow er up a nd rese t.

Do not use LD@ or ST @ to save floating point numbers in segment 0. Use POKE and

PEEK type comm ands instead.

32K R AM sy stems hav e address 7E 00H set as M TOP. T his location up to 7F FFH m ay be used to sto re

variables.

expr is the ad dress in RA M of w here a num ber is sto red.

Each floatin g-poin t num ber req uires si x byte s of m emo ry. expr in the ST@ and LD@ instructions specify the

high address. A number is stored at locations expr through expr-6.

RELATED

ST@, PUSH, POP, PEEKF POKEF

ERROR

BAD A RGUM ENT when expr > 65535

EXAMPLE

100 A=AIN(0)*.234
110 PUSH A
120 ST@7F00H

.

.
300 LD@7F00H
310 POP B
320 PRINT "Analog value retrieved=",B

>run

Analog value retrieved=",B

RPBASIC-52 PROGRAMMING GUIDE

2-52

LEN
Syntax: LEN

Function: Returns length of the current program in RAM

Mode: Comm and

Use: PRINT LEN

Cards: All

DESCRIPTION

The LE N function tells yo u the length of the p rogram in R AM. L EN returns a value of 1 wh en no program is

in RAM mem ory (1 is the length of the e nd-of-program marker).

RELATED

FREE

ERROR BAD SYNTAX Attempt to assign a value to LEN

RPBASIC-52 PROGRAMMING GUIDE

2-53

LINE (Function)

Syntax: A = LINE(line)

Where: line = 0-9 o r 100 to 123 (L ine ran ges m ay var y. Che ck you r hardw are m anua l.)

Function: Returns status o f a line at on-card lines L 0-7 or interrupt port.

Mode: Comm and,Run

Use: A = LINE(2) Reads line 2.

Cards: Basic functio n available on a ll cards. Range s vary from ca rd to card. See hard ware m anual.

DESCRIPTION

LINE returns a 0 or a 1. A '0' corresponds to a low while a '1' is a high. LINE returns the status of an external

opto ra ck line or on ca rd lines 0-7. line number corresponds to a position on an external opto rack. For on

card lines, the range is 0 to 9. For an off card rack connected to the digital I/O port, it is num bered 100 to

123. 10 0 is sim ply ad ded to the op to posi tion nu mbe r to spec ify a po sition.

When using LINE to return the status of an opto output line, a '0' means the module is ON while a '1'

indicates it is OFF. This is in contrast to the LINE statement which turns on a module with a '1'. When

reading an opto input module, a '0' indicates there is no voltage applied to the inputs.

LINE returns true logic for L0-L7. A "0" is a logic low while a "1" is a logic high. Line 8 returns the status

of INT0 and/or ISOA/B input. Line 9 returns the status of INT 1.

LINE(n) and LINE #(n) may be used interchan geably in a prog ram. For exa mple, you m ay have an e xternal 8

positio n opto rack a nd use some of the n on opt o digita l lines fo r switc h inpu ts.

RELATED

LINE#, LINEB functions, LINE, LINE#, LINEB statements, CONFIG LINE

ERRORS

BAD SYNTAX When '(' or ')' are missing

BAD DATA When line is out of range for a port.

EXAMPLE

The following example show how LINE and LINE# may be used

10 CONFIG LINE 100,12,0,0,1 Configure I/O port

20 PRINT LINE(104) Read external opto rack position 4

30 PRINT LINE#(119) Read digital I/O port line 19 (Port A.0)

40 LINE 100,1 Turns on opto module at external rack position 0

50 LINE#110,1 Turns on high current output at I/O port line 10.

RPBASIC-52 PROGRAMMING GUIDE

2-54

LINE# (Function)

Syntax: A = LINE#(line)

Where: line = connecto r number from 101 to 125 (Lin e ranges m ay vary. Che ck your hardw are

man ual.)

Function: Returns status o f a line at the digital I/O c onnector.

Mode: Comm and,Run

Use: A = LINE#(103) Reads level from digital I/O port connector number 3.

Card: Function ava ilable on all cards. R anges will va ry from card to c ard. See hardw are manu al.

DESCRIPTION

The '# ' modi fier to L INE specif ies the actua l line nu mbe r at the d igital I/O port co nnec tor. line must range

from 101 to 125 or else a BAD ARGUM ENT is returned. Line 102 is also not valid. LINE# cannot be used

for the on card opto rack (0 - 3). The line nu mber is com puted by sim ply adding 100 to the connec tor pin

num ber.

LINE# returns a '0 ' or a '1 ' , which correspond directly to the logic level at the connector. When using LINE#

to return the status of an o pto output line, a '0' mea ns the mod ule is ON w hile a '1' indicates it is OFF . This is

in con trast to th e LIN E state men t whic h turns o n a m odule with a '1'. Whe n read ing an opto in put m odule , a

'0' indicates there is no voltage applied to the inputs.

The follow ing exam ple returns the status at d igital I/O connec tor J3, pin 19 (82C5 5 port A, bit 0);

A = LINE#(119)

See LINE function for more program exam ples.

RELATED

LINE, LINEB functions, LINE, LINE#, LINEB statements, CONFIG LINE

ERRORS

BAD SYNTAX When # is used for on card positions.

BAD DATA When line is out of range for a port.

RPBASIC-52 PROGRAMMING GUIDE

2-55

LINEB (Function)

Syntax: A = LINEB(i/o bank,add ress)

Where: i/o bank = 0 to 7. Specific fun ctions are card de pendent. Re fer to your hardw are manu al.

address = device dependent. Usually it is 0 to 3.

Function: Reads a byte from an I/O device.

Mode: Comm and, Run

Use: A = LINEB (3,0) Reads po rt A of 8255 at digita l port.

Cards: All. i/o bank is unique to each card.

DESCRIPTION

This function is equivalent to INP in other BASICs. Data is read 8 bits at a time in contrast to other LINE

functions which return 1 bit at a time. The i/o bank selects a particular I/O device listed in yo ur hardware

manua l.

Use this command to read devices and obtain data not otherwise available using RPBASIC-52.

RELATED

LINE, LINE# (function), LINE, LINE#, LINEB (statement) , CONFIG LINE

ERROR

BAD ARGUMENT i/o bank > 7

EXAMPLE

The follow ing exam ple reads all 8 lines a t port A on the dig ital I/O port.

100 A = LINEB (3,0)

RPBASIC-52 PROGRAMMING GUIDE

2-56

LINE (Statemen t)

Syntax: LINE line,data

Where: line = 0 to 8 or 100 t o 123 (L ine ran ges m ay var y. Che ck you r hardw are m anua l.)

data = 0, 1, ON, or OFF. See text below.

Function: Turns a extern al opto mod ule or lines L0-L 8 on or off.

Mode: Comm and, Run

Use: LIN E 0,1

Cards: Basi c state men t availa ble for a ll cards . line ranges are card dependen t. See hardwa re manua l.

DESCRIPTION

LINE is u sed to control an e xternal output opto module o r on card lines 0-8. O n board opto po sitions are

numbered 0-3. Off card opto racks using the digital I/O port are numbered 100 to 123. 100 is simply added

to the opto position to identify the external rack. For example,

LIN E 105 ,0

turns external opto ra ck position num ber 5 off.

data is ON, OFF, 0, or 1. ON is equivalent to 1 while OFF is 0. A '0' value turns off a module while a '1'

turns it on. These values are in contrast to the LINE# statement, which has the opposite meaning. For lines

0-7, "O N" se ts a line to a 1 w hile "O FF" s ets it to 0 .

LIN E 8,0 tu rns off th e high curren t port. L INE 8,1 turn s it on.

Using ON or OFF instead of numbers or variables speeds up this statement by 20%.

LIN E and LINE # ma y be us ed inte rchan geab ly in a p rogram .

RELATED

LINE, LINE#, LINEB (function), LINE#, LINEB (statement) , CONFIG LINE

ERROR

BAD ARGUMENT When line is out of range

EXAMPLE

The following example shows how different data is returned.

10 LINE 118,OFFTurns off external opto module 18.

20 LINE #118,0 Sets digital I/O connector line 18 to 0.
30 PRINT LINE(118),LINE#(118)

run

 1 0

The function LINE(118) returns a 1 because that is the necessary condition to turn off a module. Also notice

that LINE(118) returns the status at opto port position 18 while LINE#(118) returns the condition at the

digital I/O port connector pin 18.

Use the CONFIG LINE statement to configure lines as inputs and outputs. Refer to the Digital I/O lines

section in the manual and CONFIG LINE statement for more information.

RPBASIC-52 PROGRAMMING GUIDE

2-57

LINE# (Statemen t)

Syntax: LINE# line,data

Where: line = 101 to 125, is the digital I/O line connector number. (Line ranges may vary. Check

your ha rdwa re ma nual.)

data = ON, OFF, 0, or 1. See text below.

Function: Sets a specified l ine at the digital I /O connector high or low.

Mode: Comm and, Run

Use: LIN E #10 2,0

Card: Basi c com man d avai lable fo r all car ds. line ranges are card dependen t. Refer to hardw are manu al.

DESCRIPTION

LIN E # ad dresse s the dig ital I/O conne ctor pin s. line must be be tween 101 and 125. Line 102 is not valid (it

is the +5 V su pply).

data is either ON, O FF, 0 or 1. ON is the same a s a 1 while O FF is a 0. '0' sets the line low w hile a '1' sets it

high. This is the opp osite of the LIN E com mand. O pto modu les require a low , or '0' level to turn on. LINE

inverts data while LINE # does not. Using ON and OFF speeds up statement execution by about 20%.

LIN E and LINE # ma y be us ed inte rchan geab ly in a p rogram .

RELATED

LINE, LINEB (function), LINE, LINEB (statement) , CONFIG LINE

ERRORS

BAD ARGUMENT When line is out of range

BAD SYNTAX When # is used for on card opto rack

EXAMPLE

The following example shows how different data is returned.

10 LINE 118,OFF Turns off external opto module 18.

20 LINE #118,0 Sets digital I/O connector line 18 to 0.
30 PRINT LINE(118),LINE#(118)

run

 1 0

The function LINE(118) returns a 1 because that is the condition to turn off a module.

RPBASIC-52 PROGRAMMING GUIDE

2-58

LINEB (Statemen t)

Syntax: LINEB i/o bank,a ddress,da ta

Where: i/o bank = 0 to 7. Specific fun ctions are card de pendent. Re fer to your hardw are manu al.

address = device dependent. Usually it is 0 to 3.

data = 0 to 255, data to o utput.

Function: Writes a byte to an I/O device.

Mode: Comm and, Run

Use: LIN EB3 ,0,A Writes valu e in A to port A of 8255 at digital port.

Card: Basic command available for all cards. Device/Function changes slightly for each card. Refer to the

hardware m anual.

DESCRIPTION

This statement is equivalent to OUT in other BASICs. Data is written 8 bits at a t ime. LINE and LINE #

write 1 bit at a time. The i/o bank selects a particular I/O device listed in yo ur hardware m anual.

Use this command to access or program devices into modes not directly supported by RPBASIC-52.

RELATED

LINE, LINE#, LINEB (function), LINE, LINE# (statement), CONFIG LINE

ERROR

BAD ARGUMENT i/o bank > 7, data > 255 or negative

EXAMPLE

The follow ing exam ple writes the va lue in variable 'C' to port B on the digital I/O co nnector.

100 LINE B3,1,C

RPBASIC-52 PROGRAMMING GUIDE

2-59

LIST
Syntax: LIST

LIST line number

LIST line number - line number

Where: line number is a program line number

Function: Prints all or some of a program to the console.

Mode: Comm and

Use: LIST 10-100

Card: All

DESCRIPTION

The LIST comm and prints the program in RAM to the console device. LIST inserts spaces after the line

number and before and after instructions. Program listings are terminated with a <Ctrl-C>.

LIST line number l ists the program line number to the end of the program. LIST line number-line number

lists the program from the first line num ber to the second line numbe r.

RELATED

LIST#

RPBASIC-52 PROGRAMMING GUIDE

2-60

LIST#

Syntax: LIST# port

LIST# port,line number

LIST# port,line number-line number

Where: port = 0 or 1 or number of serial ports on your card.

line number = program line number

Function: Outputs the c urrently selected p rogram to the serial printer port.

Mode: Comm and

Use: LIST#0

Cards: All. port limit is card dependent

DESCRIPTION

The L IST# com man d outp uts all o r som e of the curren tly prog ram in RA M to t he spe cified s erial po rt. port 0

is the console po rt.

LIST# inserts spaces after the line number and before and after instructions. LIST#port, line number lists the

program from the line number to the end of the program. LIST#port,line number - line number lists the

program from the first line number to the second line number. These line numbers must be separated by a

dash(-).

RELATED

LIST

RPBASIC-52 PROGRAMMING GUIDE

2-61

LOAD
Syntax: LOAD [segme nt]

Where: segment = 0 to 7, see table below.

Function: Loads a program from EPROM

Mode: Comm and

Use: LOAD 1 Loads prog ram from mem ory segme nt 1

Card: Al l. Maximum segment is card depend ent. Refer to your c ards hardwa re manua l.

DESCRIPTION

Up to 8 different programs can be saved and loaded from flash EPROM. The m aximum number depends

upon the EPROM size. When no segment is specified, 0 is assumed.

Use LOAD to retrieve programs for editing. LOAD overw rites and replaces the previous program. You

cannot merge programs. Programs are saved to flash EPROM using the SAVE n comm and.

For more information on segments and EPROM sizes, see the SAVE command.

RELATED

SAVE, EXECUTE

ERROR

BAD ARGUMENT segment > 7

RPBASIC-52 PROGRAMMING GUIDE

2-62

LOG
Syntax: LOG (expr)

Function: Returns the n atural logarithm (base "e") of expr which must evaluate to greater than zero. Calculated

to seven significant digits.

Mode: Comm and, run

Use: PRINT LOG (COS(0))

Cards: All

ERRORS

ARITH. UNDERFLOW expr or result is less than RPBASIC-52's smallest floating-point value of ± 1E-127

ARITH. OVERFLOW expr or result is greater than R PBA SIC-52's largest floatin g point value of ±

.99999999E+127

BAD ARGUMENT Attemp t to take LO G() of zero

EXAMPLE

100 PRINT EXP(-200), LOG(1.383901E-87)

>run

 1.383901 E-87 -200

RPBASIC-52 PROGRAMMING GUIDE

2-63

MTOP
Syntax: MTOP

MTOP = last valid RAM address

Function: Reads or assigns the top of external data memory which will be used by Basic for variable, string,

and RAM program storage

Mode: Comm and, run

Use: MTOP =30000

PRINT MTOP

Cards: Al l. Command is limit ing on cards with 128K or more o f RAM.

DESCRIPTIONS

The MT OP system co ntrol value is the maximum external data mem ory address which RPB ASIC-52 w ill use

for RAM program spa ce and variab le and string storage . MTO P is not necessa rily the top of available

external data memory. On cards with 32K of RAM, MTOP is automatically set to 7E00H on power up. On

cards with 128K or more of RAM, MT OP is set to 0FFFFH on power up.

RELATED

ST@, LD@

ERROR

MEMORY ALLOCATION MTOP has been assigned a value greater than top of external data memory.

EXAMPLE

? MTOP
 65535

RPBASIC-52 PROGRAMMING GUIDE

2-64

NEW
Syntax: NEW

Function Erases current program in RAM. All variables and strings are cleared.

Mode: Comm and

Use: NEW

Cards: All

DESCRIPTION

The NE W com mand de letes the program currently in RA M, sets all variab les equal to zero, an d clears all

strings and m ulti-tas king in terrupt s. NE W d oes no t effect the rea l-time clock or string alloca tion.

RELATED

CLEAR

RPBASIC-52 PROGRAMMING GUIDE

2-65

NULL
Syntax: NULL integer

Where: integer = 0 -255

Function: Sets num ber of NU LL cha racters output to use r after a carriage return

Mode: Comm and

Use: NULL 100

Cards: All

DESCRIPTION

The N ULL com man d cont rols how man y NU LL c harac ters (00 H) are outpu t follow ing a c arriage return.

After a reset, N ULL = 0. B ecau se this is a com man d mo de com man d, it can not be used a s part of a progr am.

The NULL count is stored at external data memory location 15H. Change the value of NULL in a program

using the DB Y(21)= expr instruction, where expr is any value be tween 0 an d 255. No error is returne d if it is

greater than 255.

NULL is generally needed only if you have a slow printer connected to the serial printer port. Note that

NULL affects all serial ports.

Some terminal programs will advance the cursor when a null character is received. This may result in an

strange looking display.

RELATED

LIST, PRINT

ERROR

BAD SYNTAX When integer is negative.

RPBASIC-52 PROGRAMMING GUIDE

2-66

ON COM$
Syntax: ON COM$port,length,terminator,program line

ON COM$port

Where: port = the com port numbe r 0 or 1

length = numb er of received ch aracters for an interrupt

terminator = character to cause an interrupt

program line = executes subroutine when length or terminator is met.

Function: Branches to a subroutine when length or terminator criteria is met.

Mode: Run

Use: ON CO M$0,5,13,1000 Executes su broutine at line 100 0 when eith er 5 characters or a <CR > is

received.

Cards: RPC-320, RPC-330

DESCRIPTION

ON CO M$ is a mu ltitaski ng stat eme nt. length and terminator parameters are checked on every received

character in the background. If either parameter is met, the program branches to the program line designated.

The first syntax en ables ON COM $ while the se cond one turns it off.

When terminator is 0, then character values are not checked. Only a length criteria will cause a n interrupt.

Review HARDWAR E AND SOFTWARE INTERRU PTS in the first part of this manual for interrupt

handling and multitasking information. A far more extensive example is shown earlier in this manual under

Serial Multitasking.

RELATED

COM$

ERROR

BAD A RGUM ENT when length or terminator > 255.

EXAMPLE

The follow ing exam ple executes a program a t line 1000 wh en either 5 chara cters or the <C R> cha racter is

received. The received string is transfe rred to $(0) minus th e <CR > character.

10 STRING 200,20
20 ON COM$0,5,13,1000
100 IDLE
200 GOTO 100
1000 $(0)=COM$(0)
1010 PRINT "COM string:",$(0)
1020 RETURN

RPBASIC-52 PROGRAMMING GUIDE

2-67

ON COUNT
Syntax: ON COUNT number, line number, count, program line

ON COUNT number, line number

ON COUNT number

Where: number is 4 to 11. It represents a cou nter numbe r.

line number is 0-7 or 100-123 an d is the digital I/O line nu mber.

count is 1 to 65535. It is the num ber of pulses nee ded for an interrupt.

program line is the subroutine to execute when count is reached.

Function: Enables count multi-tasking at a specific I/O line. Optionally generates a software interrupt when the

specified number of counts at an I/O line is reached.

Mode: Run

Use: ON CO UNT 10,7,200,5000 Executes a subroutine at line 50 00 when 2 00 counts are rea ched at I/O

line 7.

Cards: RPC -320, R PC-3 30. line number is card depend ent. Refer to your h ardware m anual.

DESCRIPTION

This command enables software counting. This command is not related to any hardware counters on the card.

The three syn taxes control cou nting as follows: T he first syntax with a ll parameters g enerates a softw are

interrupt when count is reached. The second syntax simply enables counting at the line number. The third

syntax turns off coun t multi-tasking for that number only.

A pulse is cou nted on a high to low transition. A line must be high and low for a m inimum of 5 ms to ensu re

detection. The RPBASIC-52 operating system scans the specified lines every 5 ms. Thus, maximum

counting frequency is 100 Hz. In practice, maximum is 95 Hz using a perfect square wave.

The current n umber of pu lses at a counter number is read using the COUNT function. To reset or zero a

count value, re-ex ecute ON COU NT aga in for that particular number.

number is from 4 to 11 to distinguish it from the other hardware counters on board.

Review HARDWAR E AND SOFTWARE INTERRU PTS in the first part of this manual for interrupt

handling and multitasking information. Read COUNT MULTITASKING earlier in this man ual for a summ ary

of operation.

RELATED

COUN T function

ERROR

BAD A RGUM ENT when number is out of range.

EXAMPLE

The following example sets line 0 as a counter and branches to a subroutine when this line is brought low 10

times

10 ON COUNT 4,0,10,1000
20 IDLE
30 GOTO 20

.

.

.
1000 PRINT "Counter 4 interrupt"
1010 RETURN

This example makes line 3 a counter only input. Its value is printed every second using COUNT function.

RPBASIC-52 PROGRAMMING GUIDE

2-68

10 ON COUNT 10,3
20 ONTICK 1,1000
30 GOTO 30

.

.

.
1000 PRINT COUNT(10)
1010 RETURN

RPBASIC-52 PROGRAMMING GUIDE

2-69

ONERR
Syntax: ONERR line number

Function: Goes to line number on arith meti c error, b ad arg ume nt, and hardw are erro rs.

Mode: Run

Use: ONER R 1000

Cards: All

DESCRIPTION

The ONER R instruction traps arithmetic errors and hardware problems, transferring control to line number.

ONERR can be used to handle errors generated due to bad user input from and INPUT instruction. ONERR

is a GOTO, not a GOSU B. Consequently, there is no easy way to resume program execution. The control

and argument stacks are cleared so all GOSUB 's, FOR-NEXT loops, etc. are cleared.

Error codes are stored at external memory location 257 (101H) and are accessed using the XBY instruction.

Code Error

0AH (10) DIVIDE BY ZERO

14H (20) ARITH OVERFLOW

1EH (30) ARITH UNDERFLOW

28H (40) BAD ARGUMENT

32H (50) HARDWARE

EXAMPLE

100 ONERR 1000
110 A=1/0
1000 PRINT "Error code:",XBY(257)

>run
Error code: 10

RPBASIC-52 PROGRAMMING GUIDE

2-70

ON GOSUB
Syntax: ON expr GOSUB l ine0[, line1[,l ine2.. .]]

Where: expr = 0 to number of subroutines after GOSUB

linen = subroutine line number to e xecute

Function: Calls subroutine based on valu e of expr.

Mode: Run

Use: ON A G OSUB 100, 200, 500

Cards: All

DESCRIPTION

The ON-GO SUB instruction conditionally branches to one of several possible subroutines depending on the

value of expr. expr must evalu ate to greater than o r equal to zero. If expr evaluates to zero, execution

branches to line0. When expr evaluates to one, execution branches to line1, etc. If ne cessa ry, expr is truncated

to an integer.

ON-GOS UB saves the location of the program statement after ON-GOSU B on the control stack and

immediately transfers program control to the selected subroutine. The subroutine is then executed. When

Basic encounters the RETURN instruction, program execution resumes at the program statement after ON-

GOSUB . ON-GOSUB instructions can be nested.

One or m ore of linen may be the same, to ex ecute the sam e subroutine w ith different expr values. At least

one linen mu st be pro vided . linen can be in an y order.

RELATED

ON GOTO, GOSUB, RETURN

ERRORS

BAD ARGUMENT The value of expr is less than 0

BAD SYNTAX The expr value is larger than the number of subroutine locations provided, or commas

were omitted between {subr n line#} values, or no subroutine locations were given.

C-STACK Attempted recursion caused control stack overflow

EXAMPLE

10 P=2
20 ON P GOSUB 1000, 3000, 2000
30 END
1000 PRINT "Line 1000"
1010 RETURN
2000 PRINT "Line 2000"
2010 RETURN
3000 PRINT "Line 3000:
3010 RETURN

>run
Line 3000

RPBASIC-52 PROGRAMMING GUIDE

2-71

ON GOTO
Syntax: ON expr GOTO l ine0[, line1[line2. ..]]

Function: Branches to a program line based on expr value.

valuate to greate r than or equal to ze ro; if expr evaluates to ze ro, execution bran ches to {0th line# }; if expr

evaluates to one, execution branches to {1st line#}, etc. Commas shown are required.

Mode: Run

Use: ON A/5 GO TO 100, 200, 500

Cards: All

DESCRIPTION

The ON-GO TO instruction conditionally branches to linen where 'n' is the value of expr. The expr must

evaluate to greater than or equal to zero. When expr evaluates to zero, execution branches to line0. When

expr evaluates to one, execution branches to line1, etc. If ne cessa ry, expr is truncated to an inte ger.

One or m ore of the program lines may b e the same , to GOTO the same lo cation with differe nt expr value s.

At least one program line must be provided. Program lines may occur in any order, for example, ON A

GOTO 500,700,600.

RELATED

GOTO, GOSUB, ON-GOSUB

ERRORS

BAD ARGUMENT The value of expr is less than 0.

BAD SYNTAX The expr value is greater than the number of {"nth" line#} numbers provided, or

commas were omitted between {line#} values, or no line numbers were provided after

the ON-GOTO.

EXAMPLE

10 P=2
20 ON P GOTO 1000,2000,3000
30 END
1000 PRINT "Line 1000"
1010 END
2000 PRINT "Line 2000"
2010 END
3000 PRINT "Line 3000"
3010 END

>run
Line 3000

RPBASIC-52 PROGRAMMING GUIDE

2-72

ONITR
Syntax: ONITR number,line number

ONITR number

ONITR line number

ONITR

Where: number = interrupt line. This is ca rd dependen t. Refer to your hardw are manu al.

line number = Subroutine line number to go.

Function: Branche s to a service subrou tine on an extern al or counter interrupt.

Mode: Run

Use: ONITR 0,5000 Executes a subroutine at line 5000 on hardware interrupt 0.

Cards: Basi c com man d avai lable fo r all car ds. number may or m ay not be used . Refer to your hardw are

manual for more information.

DESCRIPTION

ONITR provides a way to respond to hardware interrupts. It replaces ONEX1 in BASIC-52. Interrupts can

be external through the opto isolator, external TTL, or any number of card dependent sources. The number of

interrupts available depend upon the card type. Refer to your hardware manual for specific information.

The first two syntaxes are for the RPC-330. The second two are for the RPC-320 and RPC-52.

Hardw are interrupts are edg e sensitive and la tched. Wh en the current R PBA SIC program statement is

completed, execution branches to the subroutine specified by line number. Interrupt latency is determined by

the cu rrent pro gram statem ent. Th e IDL E com man d provi des the fastest respon se to an interrup t.

You must exit an ONITR using the RETI statement. Failure to do so prevents other ONITR and ONTICK

interrupts.

To turn off ON ITR, refer to the ca rd's hardware m anual.

ONITR can be interrupted only by an ONTICK interrupt. Also, ONITR can interrupt any other multi-tasking

statement (ON L INE, ON C OM$, O N KEY PAD, etc.) but cannot be interrupted by them . An interrupt pulse

to the card m ust be at least 1 m icro-second long , low level.

RELATED

RETI

ERRORS

none

RPBASIC-52 PROGRAMMING GUIDE

2-73

EXAMPLE

The following example responds to an external interrupt on the RPC-330.

10 ONITR 1,1000 Declare interrupt
.

. Other program initialization

.

200 IDLE Wait for interrupt

210 IF F = 0 THEN 200 If not done
.

. Program continues

.
990 END

1000 PRINT "In interrupt"Print something

1010 C=C+1 Increment counter

1020 IF C=5 THEN F=1 Set flag on 5 times
1030 RETI

RPBASIC-52 PROGRAMMING GUIDE

2-74

ON KEYPAD
Syntax: ON KEYPAD subroutine line

ON KEYPAD

Where: subroutine line = program to execute

Function: Branches to a subroutine when a keypad switch is pressed.

Mode: RUN

Use: ON KE YPAD 1000

Cards: RPC-320, RPC-330

DESCRIPTION

Program branches when any key is pressed on the keypad. Use the routine below to build a string.

Review HARDWAR E AND SOFTWARE INTERRU PTS in the first part of this manual for interrupt

handling and multitasking information.

RELATED

KEYPAD, CLEAR KEYPAD

ERRORS

none

EXAMPLE

The following program sets up a string array and keypad multi-tasking. When the enter key is pressed, the

string is printed. Keyp ad position 16 is de signated as ente r while 12 is clea r.

10 STRING 200,20 Initialize string area
20 $(0) = "123A456B789C*0#D" Initialize keypad string
30 P = 1 String position pointer
40 ON KEYPAD 500 Declare interrupt
50 PRINT "Enter a number from the keypad",
REM Rest of program continues
REM Scan keypad flag
210 IF PF = 0 THEN 210 Check flag. Prints string
220 PRINT when 'enter' is pressed.
230 PRINT "Entered string is: ",$(2)
240 PF = 0
250 GOTO 210
500 A = KEYPAD(0) Get keypad character
520 IF A = 12 THEN 600 : REM Process clear Add other traps as needed
530 IF A = 16 then 700 : REM process enter
540 A=ASC($(0),A) Get ASCII equivalent
550 PRINT CHR(A),
560 ASC($(2),P) = A Put into keypad input $
570 P = P + 1 Update position pointer
580 ASC($(2),P) = 13 Set CR as end of string
590 RETURN
600 REM Clear input string
610 $(2) = ""
620 P = 1
630 RETURN
700 REM 'Enter' processing
710 P = 1
720 PF = 1
730 RETURN

RPBASIC-52 PROGRAMMING GUIDE

2-75

ON LINE
Syntax: ON LINE number,I/O line,subroutine line

ON LINE number

ON LINE ON/OFF [,CLEAR]

Where: number = 0 to 7, is the interrupt reference number

I/O line = 0 to 7 or 100 to 12 3. Line num ber range is card d ependent.

subroutine line = program subroutine to execute on line change

ON/OFF = enable / suspend ON LINE checking

CLEAR = clears all line change flags

Function: Branches to a service subroutine when an I/O line changes state.

Mode: RUN

Use: ON LINE 3,7,5000 Executes a subroutine at line 5000 wh en line 7 changes.

Cards: RPC-320, RPC-330

DESCRIPTION

Up to 8 digital I/O lines can be monitored for changes in state. Lines are monitored by the operating system

every 5 ms. When a line changed from the last monitored state, a flag is set. This flag is checked at the end

of the current Basic statement. Thus, an interrupt is generated when a line goes low or high. Unless an

ONTICK or ONITR subroutine is currently executing, the subroutine line is then executed.

number is from 0 to 7. It acts, to some extent, as a priority arbitrator. It does not have any relationship to I/O

line or subroutine line except to num ber interrupts. More information late r.

An ON LIN E interrupt is turned off by specifying number only. ON LINE interrupts can be turned off any

t ime in a program.

I/O line numbers 100-123 correspond to opto rack positions. Use the table in the DIGIT AL I/O chapter to

make the correspondence between an opto position and actual digital I/O line. Lines 0-7 are designated L0-

L7 on the card.

ON LINE ON/OFF enables/suspends line interrupts. Lines are still checked every 5 ms by the operating

system . If a line d id cha nge, it is flagge d. ON LINE OFF suspends interrupts while ON LINE ON resumes

this type of interrupt. Use ON LINE OFF when an I/O line interrupt cannot be preempted by any other line

interru pt. ON LINE ON resumes interrupts. When this command is executed, any changed lines cause an

interrupt. To cancel or clear interrupts, use the CLEAR paramete r shown abo ve. All line chan ge flags are

reset and no interrupts are generated until a line changes state.

Wh en tw o lines chang e betw een th e 5 m s sam pling ti me, th e high er num bered interrup t takes priority .

However, if the same or another line changes in the next sample period, its subroutine will take priority.

For an interrupt to occur, a line must be stable for at least 5 ms. When a line changes faster than this, one or

both o f the foll owin g scen arios h appe n: Sinc e lines are sam pled e very 5 ms, a p ulsed s ignal c an be m issed.

Use one of the ONITR interrupts to capture th is k ind of signal. The second scenar io is more of a problem.

ON LINE generates subroutines. When a line change is detected, a subroutine is generated. When the

subroutine is long and a line change quick enough, these routines become nested. When too many routines

are stacked, program execution is terminated and a control-stack error is returned. Maximum nesting level

depends up on other control struc tures currently running . 30 levels is a reasona ble numb er. Howev er, if a

number of FOR-NEX T loops are running, this number is diminished.

There are two ways to take care of this program. First, make the service routine very short - less than 3

commands. Second, is to execute the ON LINE OFF com mand. This shuts off all ON LINE execution.

RPBASIC-52 PROGRAMMING GUIDE

2-76

The overall speed of RPBASIC-52 slows down by about 3% w hen all ON LINE tasks are enabled.

Review HARDWAR E AND SOFTWARE INTERRU PTS in the first part of this manual for interrupt

handling and multitasking information.

RELATED none

ERRORS

BAD A RGUM ENT when number > 7 or I/O line is not between 0-7 or 100-123.

EXAMPLE

The following exam ple sets up several interrupts.

10 ON LINE 0,1,1000
20 ON LINE 5,2,2000
30 ON LINE 3,3,3000

.

.

.

1000 PRINT "In LINE 0 interrupt"
1100 RETURN

2000 PRINT "In LINE 5 interrupt."
2010 PRINT "Suspending other line interrupts."
2020 ON LINE OFF

.

.

.
2300 PRINT "Resuming line interrupts."
2310 ON LINE ON , CLEAR
2320 RETURN

3000 PRINT "In LINE 3 interrupt."
3010 RETURN

Lines 10-30 set up ON LINE interrupts for lines 1, 2, and 3. For this example, line 5 cannot be interrupted by

any other line changes. Line 2020 suspends interrupts. The program continues to process this subroutine and

lines are still checked for changes. Line 2310 resumes line interrupts but it also clears out previous changes.

RPBASIC-52 PROGRAMMING GUIDE

2-77

ONTICK
Syntax: ONTICK time,line number

Where: time = time interval from 0.01 to 327

line number = line to branch

Function: Calls subroutine at line number every time interval.

Mode: Run

Use: ONTICK 1.25,500

Cards: All

DESCRIPTION

ONTICK calls a subroutine every time interva l. time ranges from 0.010 seconds to 327.7 seconds

(appro xima tely 5.5 minu tes). time can be specified in increments as small as 0.005 seconds. ONTICK

interrupts are turned off when time = 0. A line number must still be provided even though it is not used.

The interval period can be reset at any time in a program. When an ONTICK statement is executed, an

interrupt will occur in time seconds. Time accumulated since the last interrupt is discarded.

NOTE: Use th e RE TI com man d to ex it this su broutin e. Failu re to do so prev ents fu ture O NTI CK interrup ts.

Make sure your ONTICK subroutine can finish before the next interrupt. If the program is in the subroutine

longer than the specified time interval, the next one will be missed.

This interrupt has the highest priority of any others. ONITR can interrupt any other routine, but no other

interrupt can take over this one.

RELATED

RETI

ERRORS

BAD ARGUMENT When time > 327.6 or negative

BAD SYNTAX When any parameters left out

INVALID LINE When line number not found

EXAMPLE

The following example will interrupt 5 times before it is canceled at line 220.

10 A = .15
20 ONTICK A,200
30 IF C<4 THEN A=A+1 : GOTO 30
40 END
200 PRINT A
210 C = C + 1
220 IF C = 5 THEN ONTICK 0,200
230 RETI

>run
 145.15
 286.15
 431.15
 575.15

The IDL E com mand m ay be used to " wait" for an O NTIC K interval interrupt.

RPBASIC-52 PROGRAMMING GUIDE

2-78

PEEKB
Syntax: PEEKB(segment,ad dress)

Where: segment = 0 to 7, specifies a 64K segment

address = 0 to 65535, byte address in a segment

Function: Reads a byte from RAM

Mode: Comm and, Run

Use: A = PEEKB(1,AD)

Cards: All

DESCRIPTION

This function is used in conjunction with POKEB. Data is retr ieved from any memory location. PEEKB

inputs 1 byte of data. This function operates in much the sam e way as XB Y does except PE EKB c an access

512K of RAM.

See POKEB command for addressing and segment info.

RELATED

POKEB

ERRORS

BAD SYNTAX If B, segment, or address is missing.

BAD DATA If segment is > 7, or address > 65535

EXAMPLE

The following example reads digital I/O port A and saves it to RAM. The values are then retrieved and

printed back.

10 FOR N=0 TO 500
20 POKE B1,N*2,LINEB(3,0)
30 NEXT
40 FOR N=0 TO 500
50 A=PEEKB(1,N*2)
60 PRINT A,
70 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-79

PEEKF
Syntax: PEEKF(segment,ad dress)

Where: segment = 0 to 7, specifies a 64K segment

address = 0 to 65535, byte address in a segment

Function: Reads a floa ting point num ber from R AM. Flo ating point range is + /- 1E-127 to +/-

0.99999999E+127

Mode: Comm and, Run

Use: A = PEEK F(1,AD)

Cards: All

DESCRIPTION

This function is used in conjunction with POKE F. Data is retr ieved from any memory location. PEEK F

retrieves a floating point number saved by POKE F.

PEEKF can access up to 512K of ram by selecting a segment and an address. A segment selects a 64K block

while the address selects a location within this block.

Each floatin g poin t num ber req uires 6 bytes. address must be inc reme nted in dexe d 6 byte s for eac h valu e.

See POKEB and POKEF com mands for addressing and segment info.

RELATED

POKEF

ERRORS

BAD SYNTAX If B, segment, or address is missing.

BAD DATA If segment is > 7, or address > 65535

EXAMPLE

The follow ing exam ple reads the A -D port, multiplies it by a constant, and sa ves it to RA M. The v alues are

then retrieved and printed back.

10 FOR N=0 TO 500
20 A = AIN(1) * 0.2344
20 POKE F1,N*6,A
30 NEXT
40 FOR N=0 TO 500
50 A=PEEK F(1,N*6)
60 PRINT A,
70 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-80

PEEKW
Syntax: P E EK W (segment,ad dress)

Where: segment = 0 to 7, specifies a 64 K segm ent.

address = 0 to 65535, w ord address in a se gment.

Function: Reads an unsigned 16 bit number from RAM

Mode: Comm and, Run

Use: A = PEEKW(0,AD)

Cards: All

DESCRIPTION

Use this function in conjunction w ith POK EW . Data is retrieved from any mem ory location as a sin gle 16 bit

(2 byte) num ber. Num bers in the range o f 0 to 65535 are retriev ed. Two by tes of data are requ ired for data

retrieval.

PEEKW can access up to 512K of ram by selecting a segment and an address. A segment selects a 64K block

while the address selects a location within this block.

See POKEB for addressing and segment information.

RELATED

POKEW

ERRORS

BAD SYNTAX If W, segment, or address is missing.

BAD DATA If segment is > 7, or address > 65535

EXAMPLE

This exam ple takes 500 rea dings from an alog input 0, saves it to se gment 1 o f a 128K R AM, an d then prints

out all of the values

10 FOR N=0 TO 500
20 POKE W1,N*2,AIN(0)
30 NEXT
40 FOR N=0 TO 500
50 A=PEEKW(1,N*2)
60 PRINT A,
70 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-81

PEEK$
Syntax: $(n) = PEEK$(segment,ad dress)

Where: segment = 0 to 7, specifies a 64K segment

address = 0 to 65535, starting string address in a segment

Function: Retr ieves a s tr ing from RAM.

Mode: Comm and, Run

Use: $(0) = PEEK$(1,210)

Cards: All

DESCRIPTION

Use th is com man d to retri eve str ings sto red in R AM mem ory usin g the P OK E$ co mm and. segment specifies

the 64K segment to save to. 0 is the base segment where RPBA SIC-52 runs its programs. Setting MTOP to a

number less than the top of memory will provide a 'protected' area from the Basic program.

Refer to the POKEB statement for addressing and segment information.

NOTE: This command works only when it is assigning another string variable. A BAD

SYNTA X error is returned when it is part of a PRINT, IF-THEN, ASC, or other command

or function. Use this function only as shown in SYNTAX above.

RELATED

POKE$

ERRORS

BAD SYNTAX If $, segment, or address is missing. Also when this function is part of

another function or command.

BAD DATA If segment is > 7

EXAMPLE

The following example assumes MTO P = 30000. It will assign and recover a string from

RAM.

10 AD = 30000
20 STRING 100,20
30 $(0) = "Test string"
40 POKE$ 0,AD,$(0)
50 $(1) = PEEK$(0,AD)
60 PRINT $(1)

RPBASIC-52 PROGRAMMING GUIDE

2-82

PI
Syntax: PI

Function: Stored constant 3.1415926

Mode: Comm and, run

Use: PRINT PI

Cards: All

DESCRIPTION

PI is closer to 3.14159 2653, so proper roun ding should be 3 .1415927. Ho wever, trig errors

were greate r when 7 w as used than 6 fo r the last digit.

RPBASIC-52 PROGRAMMING GUIDE

2-83

POKEB
Syntax: POKEB segmen t,address,d ata

Where: segment = 0 to 7, specifies a 64K segment

address = 0 to 65535, specifies address in a segment

data = 0 to 255, number to save to RAM

Function: Writes one da ta byte to RAM.

Mode: Comm and, Run

Use: POK E B1 ,2100,D

Cards: All

DESCRIPTION

Use POKE B to write to any one of 512K memory locations. The maximum number of

locations is limited by the amount of RAM installed.

WARNING: RPBASIC-52 does not check the address . It is possible to poke into the

program, stack , or variable areas. Re sults are unpredicta ble. Poke into

memory above M TOP for safest operation.

PEE K and POK E state men ts and fu nction s acce ss me mory by spe cifying a segm ent an d an ad dress. A

segment is a 65,535 byte block. The largest segment number al lowed depends upon the amount of RAM

installed. A system with 32K of RAM can only acc ess 1 segm ent, numbe red segme nt 0. When 128K is

installe d, two segm ents, 0 a nd 1, are acce ssible. A 512K system has 8 se gme nts, num bered 0 throu gh 7.

Ano ther w ay of lo oking at a seg men t is its ad dress e quiva lent. T he gen eral ad dressin g form is: S,A AA A. S

is the se gme nt and AA AA is the ad dress.

RPBAS IC-52 always uses segment 0 for variable and program storage. Setting MTOP to a number below the

top of RAM ensures tha t RPBASIC-52 wi ll not use the memory above tha t address . In a 32K RAM sys tem,

the top of memory is address 32767. In a 128K or larger system, it is 65535. In 128K or 512K systems, all of

the memory in segment 1 and higher is available for data storage.

Maximum segment and address for a given system RAM size are:

RAM Maximum Maximum

Size Segment Address

32K 0 32767

128K 1 65535

512K 7 65535

RELATED

PEEKB, XBY

ERRORS

BAD SYNTAX If B, segment, ad dress, or data is missing.

BAD DATA If segment is > 7, address > 655 35 or ne gative , data > 255 or negative.

EXAMPLES

10 POKE B0,64000,D Pokes to segment 0, address 64000

20 POKE W1,0,A Pokes a word (2 bytes) to segm ent 1, address 0

30 POKE $2,30,$(1) Pokes a string to segment 2, address 30.

RPBASIC-52 PROGRAMMING GUIDE

2-84

POKEF
Syntax: POKEF segmen t,address,d ata

Where: segment = 0 to 7, specifies the 64K segment

address = 0 to 65535, location in segment to save to

data = +/- 1E-127 to +/- 0.99999999E+127, number to save to RAM

Function: Writes a f loa ting point number to RAM.

Mode: Comm and, Run

Use: POKE F1,AD,DA

Cards: All

DESCRIPTION

Use PO KEF to w rite floating point num bers into RA M. Program "constants" suc h as calibration tab les are

saved to batte ry bac ked R AM .

WARNING: RPBAS IC-52 does not check the address. It is possible to poke into the program, stack, or

variable areas. Results are unpredictable. Poke into mem ory above MT OP for safest

operation.

Each floating point numb er requires 6 bytes of R AM. W hen storing to R AM, sep arate addresses by at least 6

bytes. address i s the s tar ting address in RAM. Data is wri tten to f rom address to address + 6. For exam ple, if

the first address was 0, the next is 6, third 12, and so on. An easy way to calculate an address is to use an

index number and multiply it by 6. By adding a constant, different sections of RAM may be used. See the

POKEB command for segment and address information.

RELATED

PEEKF

ERRORS

BAD SYNTAX If W, segmen t, address , or data is missing.

BAD DATA If segment is > 7, address or data > 65535 or negative

EXAMPLES

The follow ing exam ple takes data from an analog inpu t, multiplies it by a con stant, and saves it to seg ment 1

of the 128K RAM.

1000 FOR N = 0 TO 7
1010 POKE F1,N*6+100,AIN(N)*1.2383
1020 NEXT

The equa tion "N*6" is a n index m ultiplier.

The next example p rint s ou t the data f rom RAM.

500 FOR N = 0 TO 7
510 PRINT PEEKF(1,120+N*6)
520 NEXT

The expre ssion "120+N *6" perform s two functions. First, 120 is a fixed offset into RA M. This offset is

necessary when allocating sections of RAM for storage parameters (strings, byte data, and other floating point

numbers). "N*6" indexes the floating point num ber into RAM so it does not overwrite other valid numbers.

RPBASIC-52 PROGRAMMING GUIDE

2-85

POKEW
Syntax: P O KE W segmen t,address,d ata

Where: segment = 0 to 7, specifies the 64K segment

address = 0 to 65535, location in segment to save to

data = 0 to 65535, number to save to RAM

Function: Writes an uns igned 16 b it number to RAM.

Mode: Comm and, Run

Use: POKE W1,AD,DA

Cards: All

DESCRIPTION

Use POKE W to write 16 bit numbers into RAM. The results of an A-D conversion, for example, can be

saved.

WARNING: RPBAS IC-52 does not check the address. It is possible to poke into the program, stack, or

variable areas. Results are unpredictable. Poke into mem ory above MT OP for safest

operation.

See the POKEB command for segment and address information.

RELATED

PEEKW

ERRORS

BAD SYNTAX If W, segmen t, address , or data is missing.

BAD DATA If segment is > 7, address or data > 65535 or negative

EXAMPLES

The fol lowing example takes da ta from the AIN func tion and saves it to segment 1 of the 128K RAM.

1000 FOR N = 0 TO 7
1010 POKE W1,N*2+100,AIN(N)
1020 NEXT

The next example p rint s ou t the data f rom RAM.

500 FOR N = 0 TO 7
510 PRINT PEEKW(1,100+N*2)
520 NEXT

RPBASIC-52 PROGRAMMING GUIDE

2-86

POKE$
Syntax: POKE$ segment,address,string

Where: segment = 0 to 7, specifies the 64K segment

address = 0 to 65535, location in segment to save to

string = string variable to save

Function: Save string variable to RAM memory.

Mode: Comm and,Run

Use: POKE$ 1,30000,$(1)

Cards: All

DESCRIPTION

POK E$ is u sed to s ave lite ral string s in RA M m emo ry. Strin gs of an y leng th can be sav ed.

When poking several strings, memory should be divided into "blocks" equal to the length specified in the

STRING statement plus 1. POKE $ does not check to see if it is writing over other variable information.

WARNING: RPBAS IC-52 does not check the address. It is possible to poke into the program, stack, or

variable areas. Results are unpredictable. Poke into mem ory above MT OP for safest

operation.

Refer to the POKEB statement for segment and address information.

POK E$ requires a string variable in order to w ork. If string is in quotes, a data error is returned.

RELATED

PEEK$

ERRORS

BAD SYNTAX If $, segment, ad dress, or data is missing.

BAD DATA If segment is > 7, address > 655 35 or ne gative , string not valid.

RPBASIC-52 PROGRAMMING GUIDE

2-87

POP
Syntax: POP variable [,variable,...]

Function: Take s a valu e PU SHe d to a sta ck and assign s it to the variab le.

Mode: Comm and, run

Use: POP X,Y,Z

Cards: All

DESCRIPTION

Multiple variables can be POPped off the stack by separating the variables with commas. The first value

POPped is the last value PUSHed.

POP and PUSH are useful for transferring data values between subroutines. They allow you to write a

subroutine with arbitrary variable names. Data transfers to and from the subroutine can be performed by

PUSH a nd POP, rather than by equating variable nam es.

RELATED

PUSH, LD@, ST@

ERROR

A-STACK No variable on the stack when the POP instruction executed.

EXAMPLE

100 FOR N=0 TO 7
110 PUSH AIN(N)
120 NEXT
130 FOR N=0 TO 7
140 POP A
150 PRINT A*.00214
160 NEXT

>run

 0
 0
 0
 0
 0
 .536
 3.445
 2.334

RPBASIC-52 PROGRAMMING GUIDE

2-88

PH0.
PH1.
Syntax: PH0 . expr

PH1 . expr

Where: expr = any mathematical expression

Function: Print in hexadecimal format following the number with an "H".

Mode: Comm and, run

Use: PH0. PEEKB (1,3000)

Cards: All

DESCRIPTION

The PH0. and PH1. instructions work like PRINT instruction except that it print values in HEX. The value

printed is alway s a truncated integ er and is followe d with an "H " to indicate hex adecim al format. If expr

evalu ates to a fracti onal n umb er with in integ er rang e, expr is truncated and d isplayed in hex format. If expr is

not within integer range (0 through 0FFFFH/65535), the normal decimal PRINT mode is used. PH0.

suppresses tw o leading zeros if expr evaluates to less than 0FFH. PH 1. always prints four hexadecimal digits.

If there is no expr, a carriage return - line feed combination (a blank line) will be output. An expr may be any

combination of instructions/operators and variables, strings, or literal values. More than one expr may be

output by separating them with commas. Values are printed with a leading space; a list of values separated

by commas will thus print with one intervening. This is different from the decimal PRINT instruction which

prints values with a trailing blank. Strings and literals are output with no added blanks. If a comma is the last

character in the list then a carriage return/linefeed is suppressed.

EXAMPLE

100 PH0. A

RPBASIC-52 PROGRAMMING GUIDE

2-89

PRINT
PRINT #,
P.
?
Syntax: PRINT expr

P. expr

? expr

PRINT#port,expr

P.#port,expr

?#port,expr

Where: expr = any string, mathematical number, or calculation

port = serial output port 0 or 1. Your card may have m ore ports.

Function: Prints value of expr to a serial port

Mode: Comm and, run

Use: PRINT "String",$(0),AIN(0)*.00214

Cards: PRINT#, P.#, and ?# only on RPC-320, RPC-330.

DESCRIPTION

PRINT is used to send serial data to any port. Default is COM 0. Use port or UO to re-direct output to COM

1 or others.

If there is no expr, a carria ge retu rn - line fe ed com binatio n is sen t. expr is any combination of

instructions/operators and variables, strings, or literal values. More than one expr may be output by

separating them with commas. Values are printed with a leading and trailing space; a list of positive values

separated by commas will thus print with two intervening blanks. A "+" is implied. The "-" symbol precedes

negative values and takes the place of the normal preceding space. Strings and literals are output with no

added blanks. If a comma is the last character in the list then the normal <CR><LF> is suppressed.

The shorthan d versions P. and ? are converted to PRINT after each program line is entered, so a P. or ? is

neve r listed.

The PRINT#port, instruction functions exactly like the PRINT instruction, but it directs output to the

designated serial port. When using this syntax, any output directed by the UO comm and is bypassed.

P.# and ?# are shorthand for PRINT#.

RELATED UO, CONFIG BAUD

EXAMPLE

100 STRING 200,20 : $(0)="String" : B=PI*5
110 PRINT $(0),B,AIN(0)*.00215

>run

String 15.707963 0

RPBASIC-52 PROGRAMMING GUIDE

2-90

PUSH
Syntax: PUSH expr1 [,expr2 ,...]

Where: expr is a numeric value

Function: Puts the value o f expr to the argument stack. The first value PUSHed and is the last POPped.

Mode: Comm and, run

Use: PUS H X ,Y

Cards: All

DESCRIPTION

PUSH and POP instructions pass valu es to Basic su broutines. The las t value pushed is the last expression in

the PUSH instruction, and is also the first popped off the stack. Multiple expressions can be pushed onto the

argument stack by separating the expressions w ith commas.

The PU SH and P OP instruction s alleviate som e of the problem s of global variables in Basic. The y eliminate

the need to equate subroutine variables to global variables used by the program which called the subroutine.

The stack is cleared when a new program is loaded using EXECUTE.

RELATED

POP, LD@, ST@

ERROR

A-STACK Attempt to push too many values on the argument stack. Typically no more than 32 values may

be PUS Hed onto th e stack before it is full.

EXAMPLE

Please refer to the POP example.

RPBASIC-52 PROGRAMMING GUIDE

2-91

PWM
Syntax: PWM line, ltime,htime[,cycles]

Where: line = 0 to 8 or 100 to 12 3. This is card depe ndent. Refer to yo ur hardware m anual.

ltime = 0 to 255, number of 5 ms periods line is low

htime = 0 to 255, number of 5 ms periods line is high

cycles = 0 to 65535, optional number of pulse cycles

Function: Produces pu lse width m odulated outpu t.

Mode: Comm and, Run

Use: PWM 8,3,B,5000

Cards: All

DESCRIPTION

Any digital I/O lines may o utput a Pulse W idth Modu lated signal. Pulses c an run indefinitely or for a specific

number of times. PWM m ay be used to control the brightness of a display or send a number of pulses to a

motion co ntroller.

WARNING: PWM continues to run in the command mode.

Low and high tim es are referenced from unbuffered outputs. Outputs from high current lines are inverted, so

high and low times are reversed.

cycles refer to the num ber of low to high transitions from an unbuffered outpu t. When a P WM output is

finished counting, that line goes and remains high.

A PW M output is sh utoff the quickest by specifying 1 for htime, ltime, and cycles. This can be done as part of

a program or in the immediate mode.

RELATED

CONFIG LINE

ERRORS

BAD SYNTAX If any param eters left out.

BAD ARGUMENT When any parameters are out of range.

EXAMPLE

The following example sets outputs a PWM signal to line 7. Line 7 is configured for an output on power-up.

PWM 7,2,1

RPBASIC-52 PROGRAMMING GUIDE

2-92

READ
Syntax: READ variable [,variable , ...]

Function: Sequentially a ssigns the values of data provided in the DAT A statem ent to the variables in a list.

Mode: Run

Use: REA D X ,Y,Z

Cards: All

DESCRIPTION

Multiple variables following one READ instruction must be separated by commas. READ must always be

followed by at least one variable.

See RESTO RE for examples and more information.

RPBASIC-52 PROGRAMMING GUIDE

2-93

REM
Syntax: REM any ASCII text

Function: Allows remarks in a program or on command line

Mode: Comm and, run

Use: 100 RE M Yo u can put any thing you wa nt here

REM T his remark has no line number so will be discarded by RPBASIC -52

Cards: All

DESCRIPTION

The REM instruction lets you add comments to your program. Any text after a REM is ignored. REM

instructions cannot be terminated with a colon, but they can follow colons. RPBASIC-52 lets you use REM

in command mode and w hile downloading programs. A REM without a preceding line number is ignored by

RPBASIC-52. This allows you to place comments in an off-line source code text file and have them stripped

out when you download the text file to the card.

Appropriate comments make your programs easier to understand and maintain, but do slow program

execution and consume program memory.

Multiple statements per line following a REM are ignored since they are considered part of the remark. Refer

to the example.

EXAMPLE

100 REM A comment
120 PRINT A :REM PRINT A+2

>run
 0

RPBASIC-52 PROGRAMMING GUIDE

2-94

RESTORE
Syntax: RESTORE

Function: Resets the R EAD instruction pointer to the b eginning of the D ATA list.

Mode: Run

Use: RESTORE

Cards: All

DESCRIPTION

After a RE STOR E statem ent is executed , the next RE AD state ment acc esses the first item in th e first data

s ta tement in the program.

ERROR

NO DA TA - no DATA list provided.

EXAMPLE

100 READ A,B,C
110 PRINT A,B,C
120 RESTORE
130 READ X,Y,Z
140 PRINT X,Y,Z
150 READ A,B,C
160 PRINT A,B,C
150 DATA 1,2,3*2
150 DATA 6,9,12

>run

 1 2 6
 1 2 6
 6 9 12

RPBASIC-52 PROGRAMMING GUIDE

2-95

RETI
Syntax: RETI

Function: Return from ONITR or ON TICK interrupt. RETI must be the last instruction of the interrupt

subroutine.

Mode: Run

Use: RETI

Cards: All

DESCRIPTION

The R ETI in structio n caus es you to exit fr om O NTI CK , ONT IME (RPC -52 ca rd only) and O NIT R inte rrupts.

RETI functions like RETURN , but it clears software interrupt flags so that RPBAS IC-52 can acknowledge

subsequent inte rrupts. If you don't execute the RET I instruction in the interrupt proc edure, all future

interrupts, hardware and software, are ignored.

RELATED

ONITR, ONTICK

EXAMPLE

Refer to ONT ICK and O NITR exa mples.

RPBASIC-52 PROGRAMMING GUIDE

2-96

RETURN
Syntax: RETURN

Function: Returns program to next instruction following a GOSUB command or software interrupt (ON LINE,

ON KEY PAD , etc.)

Mode: Run

Use: RETURN

Cards: All

DESCRIPTION

RETUR N is used as a return from a GOS UB. Program execution continues at the statement following the

GOSUB.

RPBASIC-52 PROGRAMMING GUIDE

2-97

RND
Syntax: RND

Function: Returns a pseudo-random fractional number between zero and one inclusive.

Mode: Comm and, run

Use: A=RND

Cards: All

DESCRIPTION

The RND operator uses a 16-bit binary seed and repeats after 65535 pseudo-random numbers. The initial

seed is the value of MTOP. The seed can be changed by writ ing to address 10CH and 10DH using the XBY

command.

EXAMPLE

100 A=RND
110 PRINT A

RPBASIC-52 PROGRAMMING GUIDE

2-98

SAVE
Syntax: SAVE [segme nt]

Where: segment = 0 up to 7

Function: Save program to fl ash EPROM.

Mode: Comm and

Use: SAVE 1

Cards: All

DESCRIPTION

Use SAVE to store programs in flash EPROM. The current program in RAM is saved to the segment

specified. If no segment is specified, 0 is assumed. Up to 8 programs (totaling over 500K bytes) can be

saved, depending upon the flash EPROM type. Using EXECUTE , any of these 8 programs can be loaded and

run dur ing run-t ime. Use LOAD to re t rieve a program.

SAVE automatically determines the type of flash EPROM installed. When an attempt is made to save a

program to a segment larger than allowed by the EPROM type, an error message is returned.

The largest segment size depends upon the type of flash EPROM installed. The following table shows the

largest segment for a part icu la r EPROM.

EPROM Size Sector Segment

type Bytes size range

29C256 32K 64 0

29C040 512K 512 0-7

SAV E com pletely overw rites previous data in m emory, up to the program size plus enough b ytes to com plete

a sector. A sector is the number of bytes programmed in a flash at a time. For example, if a program was

only 100 bytes lo ng and a 29C 040 is installed, 412 by tes of "filler" are also progra mme d. If a program is

1000 bytes long , 24 bytes of filler are program med (2 sec tors = 512 bytes). Se ctor sizes are not a c oncern

except to users of BSAVE comm and.

Maximum program size also depends upon the amount of RAM installed. A 32K RAM can run a 29K

program. A 128K or 512K RAM can execute up to a 60K byte program.

To fin d out th e leng th of the progra m cu rrently in RA M, typ e PR INT LEN in the im med iate m ode.

Frequently, the length of a program in RAM is 10% to 30% less than that in a disk file. This is because the

code is tokeniz ed and com mands a re replaced w ith a single charac ter.

When program requirements are small and data is large, some data can be saved to the flash EPROM using

the B SAV E com man d.

RELATED

BSAVE, EXECUTE, LOAD

ERROR

BAD DATA If segment is > 7 or larger than flash EPROM type.

RPBASIC-52 PROGRAMMING GUIDE

2-99

SGN
Syntax: SGN(expr)

Function: Returns +1 if expr is greater than zero, zero if the expr equals zero, and -1 if expr is less than zero.

Mode: Comm and, run

Use: PRINT SGN(S IN(X)))

Cards: All

DESCRIPTION

Use SG N in level con trol applications. If a level is high or low, it can direct co ntrol to the appropriate

program.

EXAMPLE
100 ON SGN(A)+1 GOSUB 2000,3000,4000

RPBASIC-52 PROGRAMMING GUIDE

2-100

SIN
Syntax: SIN(expr)

Function: Returns the trigo nometric S INE of expr which is assum ed to be in radians . The value of expr must be

in the range of +/- 200,000.

Mode: Comm and, run

Use: PRINT SIN(PI/2)

Cards: All

DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first reduce the

argument to a value that is between 0 and PI/2. the algorithm used to reduce the value will reduce accuracy

when value is large. To maintain accuracy, keep the arguments for trig functions as small as possible.

ERRORS

ARITH. UNDERFLOW value or result is less than RPBASIC-52's smallest floating-point value of ± 1E-127

ARITH. OVERFLOW value or result is greater than RPBASIC-52's largest floating-point value of

±.9999999E+127

DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES
10 PRINT SIN(PI/2),COS(10*PI),TAN(8*PI/4)
20 PRINT ATN(PI)

>run

 1 1 0
 1.2626272

RPBASIC-52 PROGRAMMING GUIDE

2-101

SPC
Syntax: PRINT SPC(expr)

Where: expr = number of spaces to print

Function: Sends expr number o f space charac ters (20H) from the serial port.

Mode: Comm and, run

Use: PRINT SPC(A *4),

Cards: All

DESCRIPTION

SPC m ust be used in co njunction with a print stateme nt.

EXAMPLE

100 PRINT SPC(80-A*4),

RPBASIC-52 PROGRAMMING GUIDE

2-102

STOP
Syntax: STOP

Function: Breaks program execution; resume with the CONT comm and.

Mode: Run

Use: STOP

Cards: All

DESCRIPTION

The STOP instruction lets you break program execution at specific locations in a program. You can display

and modify variables after STOPping a program. STOP is useful for program debugging. The CONT

command lets you resume program execution.

The line number printed after execution of a STOP instruction is the line number following the instruction

and not the line number containing the STOP instruction.

If you modify a STOPped program, CONT will be unable to continue execution.

RELATED

CONT, GOTO

ERROR

CAN'T CONTINUE Attempt to continue after edit ing a stopped program, or at tempt to execute CONT

without a prior STOP or <Ctrl-C>.

EXAMPLE

100 PRINT "Tick=",TICK(0)
110 STOP
110 GOTO 100

>run

A= 0
STOP - IN LINE 120

RPBASIC-52 PROGRAMMING GUIDE

2-103

STR
Syntax: A = STR(function,$(n)[,$(n)]))

Where: function = 0 to 14, specifies str ing function to perform as described below.

Function: Performs string m anipulation, describ ed below, pe r function num ber.

Mode: Comm and,Run

Use: A = ST R(0,$(0))

Cards: RPC-320, RPC-330

DESCRIPTION

There are 11 str ing manipulation functions using STR. Each function is described below.

NOTE: Most of these functions require a string variable (such as $(0)) rather than a quoted string. Functions

which will allow quoted strings offer an alternate syntax immediately below the first one.

Syntax: A = ST R(0,$(n))

Description:

Returns num ber of characters in a string. When string is not set equal to som ething, or the string num ber is

out of bounds, erroneous data is returned. Length limit is 254 characters.

Example:
10 STRING 100,20
20 $(0)=" 123456789"
30 PRINT STR(0,$(0))
run
 10

Syntax: A = ST R(1,$(n))

Description:

Convert letters A - Z to lower case. Variable A returns length of the string.

Example: 10 STRING 100,20
20 $(0)="Some UPPER case"
30 A = STR(1,$(0))
40 PRINT $(0)
run
some upper case

Syntax: A = ST R(2,$(n))

Description:

Convert letters a - z to upper case. Variable A returns length of the string.

Example: 10 STRING 100,20
20 $(1) = "Some lower case."
30 A = STR(2,$(1))
40 PRINT $(1)
run
SOME LOWER CASE.

RPBASIC-52 PROGRAMMING GUIDE

2-104

Syntax: A = ST R(3,$(n))

Description:

Retu rns num bers in a string as a rea l num ber. Sim ilar to V AL i n othe r Basi cs. Le ading space s are ig nored .

First non-num ber terminate s conversion at las t valid numb er. No valid num bers return 0. Num ber length is

limited to the first 12 valid numbers and decimal in a string. This means a number no greater than

99999 99999 999 is c onver ted to a num ber.

Example: 10 STRING 100,20
20 $(2) = "-23.452volts"
30 A= STR(3,$(2))
40 PRINT A
run
-23.452

Syntax: A = ST R(4,$(n))

Description:

Trims spaces to left of first non-space character. Variable A returns length of trimmed string.

Example: 10 STRING 100,20
20 $(0) = " 1234"
30 A = STR(4,$(0))
40 PRINT $(0)
50 PRINT A
run
1234

 4

Syntax: A = ST R(5,$(n))

Description:

Trims spaces from right side of string. Variable A returns length of trimmed string.

Example: 10 STRING 100,20
20 $(0) = "ABCDE "
30 A = STR(5,$(0))
40 PRINT $(0)
50 PRINT A
run
ABCDE
 5

Syntax: A = ST R(6,$(x),$(y))

A = S TR(6,$(x)," string")

Description:

Append s one string into anoth er. This function co ncatenates tw o strings in the form o f $(x) = $(x) + $(y).

Length of new string is returned in variable A. The variable $(y) could be a quoted string.

Example: 10 STRING 120,40
20 $(0)="First part"
30 $(1)=" Second part"
40 A = STR(6,$(0),$(1))
50 PRINT $(0)
60 PRINT "Length:",A
70 A = STR(6,$(0)," last part")
80 PRINT $(0)
90 PRINT "Length:",A
run
First part Second part
Length: 22
First part Second part last part
Length: 32

Lines 50 an d 80 print the conc atenated string $(0).

RPBASIC-52 PROGRAMMING GUIDE

2-105

Syntax: A = STR(7,$(put),$(get),position,len gth)

Description:

Extracts a portion of a string from $(get) and transfers it over to $(put). The actual num ber of characters

mov ed is re turned . position starts at 1. When position is 0, no characters are placed into $(put) regardless of

length . When length is 0, all characters are copied from $(get) to $(put) starting at position.

Example: 10 STRING 200,20
20 $(0) = "123456.789"
30 A = STR(7,$(1),$(0),3,5)
40 PRINT $(1)
50 PRINT "Length:",A
run
3456.
Length: 5

Syntax: A = STR(8,$(search),$(substring))

Description:

Scans $(search) for occurrence of substring. Returns position where entire substring first matches search

string. Returns 0 when substring is not in search string.

Example: 10 STRING 200,20
20 $(0) = ">05M34C3"
30 $(1) = "05M"
40 A = STR(8,$(0),$(1))
50 PRINT "Position match at:",a
run
Position match at: 2

The number '0' in $(1) matches $(0) at position 2.

Syntax: A = STR(9,$(string1),$(string2))

Description:

Compares string1 to string2. Returns position of first m ismatch. If both strings exactly m atch, then 0 is

returned.

Example: 10 STRING 200,20
20 $(0) = ">05M34C3"
30 $(1) = ">05"
40 A = STR(9,$(0),$(1))
50 PRINT "Mismatch starting at:",a
run
Mismatch starting at: 4

Since the first three character positions matched, position 4 is returned as the longer string did not match the

shorter one.

String functions 8 and 9 are useful in RS-485 network communication. In the above example, ">05" could be

the RPC-320's address. Knowing the mismatch starts at position 4, the address can be assumed correct. If the

misma tch started soone r, a smaller num ber is returned. Hen ce, the mess age was n ot intended for this

particular card and the entire message can be flushed.

RPBASIC-52 PROGRAMMING GUIDE

2-106

Syntax: A = ST R(10,$(n), format,va riable)

Description:

Converts and formats variable into a st ring an d puts it into $(n). Varia ble A returns irrelev ant da ta.

Formatting is controlled by the format variable. Strings are formatted into one of 3 basic patterns, described

below.

format = 0. Default free form at. When n umber is be tween ± 99999999 a nd ±0.1, RP BAS IC will save integers

and fractions. When numbers are outside this range, the F0 format, described next, is used.

format = Fx. Floating point format. 'x' determines how many digits after the decimal point are saved. When

x = 0, th e num ber of tra iling di gits w ill vary and tra iling 0's a re not sa ved. 'x' is re presen ted as a hex nu mbe r.

When format = 0F3H , 3 decimal nu mbers are p rinted. An alternate way of setting floa ting point output is to

make format= the number of decimal numbers plus 240.

format = xyH. Force integer and/or fraction output. Comma nd is same as USING(##.##), where 'x' is the

number digits left of the decimal point and y is to the right. Maximum value for x and y is 7. Use the hex

format to set the n umber.

Example: 10 String 200,20
20 C = 23.45
30 F = 0
40 A = STR(10,$(0),F,C)
50 PRINT "Variable value, before formatting:",C
60 PRINT "String in free format:",$(0)
70 F = 0F2H
80 A = STR(10,$(0),F,C)
90 PRINT "Using floating point format:",$(0)
100 F=52H
110 A=STR(10,$(0),F,C)
120 PRINT "Using #####.## format:",$(0)
run
Variable value, before formatting: 23.45
String in free format: 23.45
Using floating point format: 2.34 E+1
Using #####.## format: 23.45

ERROR

BAD ARGUMENT When function is out of range or string data is incorrect.

RPBASIC-52 PROGRAMMING GUIDE

2-107

STRING
Syntax: STRING total bytes,string leng th

Where: total bytes = total num ber of bytes in m emory to allo cate

string leng th = maximum number of bytes in a string

Function: Allocate memory for strings

Mode: Comm and, run

Use: STRING 56,10 : REM Allocate memory for 5 10-byte strings

Cards: All

DESCRIPTION

Prior to using strings, you m ust use STR ING to alloc ate mem ory for them. Th e STR ING argu ment valu es are

computed by this equation:

total bytes = ((string leng th + 1) * number_of_strings) +1

The only way to recover string memory is with a "STRING 0,0" instruction. String memory is reclaimed and

then reallocated each time you use the STRING operator. Strings are terminated with a carriage return (0DH

or 13) which is the additional byte ad ded to your bytes per string expr.

WARNING:

STRIN G causes RPB ASIC-5 2 to execute the equivalent of a C LEA R instruction sinc e string and num eric

variables occupy the same m emory space. In other words, the STR ING instruction clears all variables,

interrupts and stacks. Allocate string memory early in your program and don't reallocate it unless you can

accept the loss of all variables.

RELATED

ASC, CHR, STR

ERRORS

MEMORY ALLOCATION Memory not allocated for strings

C-STACK STRING used in a subroutine, clearing the stack.

EXAMPLES

10 STRING 1000,40
20 $(0) = "Up to 40 characters in this string"
.
.
100 $(2) = COM$(1)

RPBASIC-52 PROGRAMMING GUIDE

2-108

SQR
Syntax: SQR(expr)

Where: expr is any valid mathematical expression, number, or variable greater than 0

Function: Retu rns a po sitive s quare root.

Mode: Comm and, run

Use: PRINT SQR(A)

Cards: All

DESCRIPTION

expr must be positive. Any calculation is accurate to ±5 least significant digits.

ERRORS

ARITH. UNDERFLOW expr or result is less than RPBASIC-52's smallest floating point value of ± 1E-127

ARITH. OVERFLOW expr or result is greater than RPBASIC-52's largest floating point value of

±.99999999E+127

BAD ARGUMENT Attempt to take SQR() of a negative number

EXAMPLE

100 FOR N = 1 to 10
110 A=SQR(N)**2
120 IF (A-N)<>0 THEN PRINT A,N
130 NEXT

>run
 2.0000001 2
 2.9999999 3
 5.0000001 5
 6.0000002 6
 6.9999999 7
 7.9999998 8

RPBASIC-52 PROGRAMMING GUIDE

2-109

ST@
Syntax: ST@ expr

Where: expr = 0 to 65535

Function: Takes a floating-point number from the a rgument stack and stores it to data mem ory at the address.

Mode: Comm and, run

Use: PUSH B : ST@7E00

Cards: All

DESCRIPTION

ST@ is used in conjunction with PUSH, POP, and LD@ . Use these commands to save and retrieve floating

poin t numbers to p rogram RAM.

NOTE: LD@ and ST@ cannot use ex tended RA M. Only se gment 0 R AM (u sed for running B asic

programs) is used. Use PEEK and POKE com mands to access this memory.

WARNING: Wh en 128 K and 512K RA M are installe d, all of m emo ry is cle ared o n pow er up a nd rese t.

Do not use LD@ or ST @ to save floating point numbers in segment 0. Use POKE and

PEEK type comm ands instead.

32K R AM sy stems hav e address 7E 00H set as M TOP. T his location up to 7F FFH m ay be used to sto re

variables.

expr is the ad dress in RA M of w here a num ber is sto red.

Each floatin g-poin t num ber req uires si x byte s of m emo ry. expr in the ST@ and LD@ instructions specify the

high address. A number is stored at locations expr through expr-6.

RELATED

LD@, PUSH, POP

ERROR

expr location should be above MTOP. Otherwise the data may be overwritten.

EXAMPLE

100 A=AIN(0)*.234
110 PUSH A
120 ST@7F00H

.

.
300 LD@7F00H
310 POP B
320 PRINT "Analog value retrieved=",B

>run

Analog value retrieved=",B

RPBASIC-52 PROGRAMMING GUIDE

2-110

TAB
Syntax: PRINT TAB(position)

Where: position = 1 to 255

Function: Specifies a column number at to begin printing.

Mode: Comm and, run

Use: PRINT TAB(5), "Pressure", TAB (20),"Temperature"

Cards: All

DESCRIPTION

TAB is used with PRINT . It is used to print data in table form. If the cursor is past the requested column, the

instruction is ignored.

ERROR

BAD ARGUMENT When position is negative or out of range.

EXAMPLE

100 PRINT TAB(5),"Pressure",TAB(20),"Temperature"
110 FOR N=0 TO 6
120 PRINT TAB(7),AIN(0)*.237,
130 PRINT TAB(23),AIN(1)*1.324
140 NEXT

>run
 Pressure Temperature
 116.13 237.3
 116.14 237.3

 116.13 237.4
 116.14 237.4
 116.11 237.0
 116.16 237.6
 116.13 237.5

RPBASIC-52 PROGRAMMING GUIDE

2-111

TAN
Syntax: TAN(expr)

Function: Returns the trigo nometric tan gent (sin/cos) of expr whic h is assu med to be in radian s. expr must be

in the range of +/- 200,000.

Mode: Comm and, run

Use: PRINT TA N(PI/4)

Cards: All

DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first reduce the

argument to a value that is between 0 and PI/2. the algorithm used to reduce the value will reduce accuracy

when value is large. To maintain accuracy, keep the arguments for trig functions as small as possible.

ERRORS

ARITH. UNDERFLOW value or result is less than RPBASIC-52's smallest floating-point value of ± 1E-127

ARITH. OVERFLOW value or result is greater than RPBASIC-52's largest floating-point value of

±.9999999E+127

DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES

100 PRINT SIN(PI/2),COS(10001*PI),TAN(5*PI/4)
110 PRINT ATN(TAN(PI/4))/PI

>run

1 -1 1
.24999996

RPBASIC-52 PROGRAMMING GUIDE

2-112

TICK
Syntax: TICK(timer)

Where: timer = 0 to 3. It specifies the tim er numbe r.

Function: Returns a time from one of 4 process clocks in 5 ms increme nts.

Mode: Comm and,Run

Use: A = TICK(2)

Cards: All

DESCRIPTION

There are four tick timers updated 200 times per second. Each timer is independent of each other in that they

may be read and cleared separately (see CLEAR TICK). All timers are updated at the same time.

This function is separate from the real time clock and is not battery backed. All timers reset to 0 on power up

or reset. Timers c ontinue to run in co mma nd mode and cannot b e turned off.

TICK(n) returns time in thousandths of a second (in 5 ms intervals) up to 65535.995 seconds, or

approximately 18.2 hours. The timer then starts at 0 again.

Tick timers are not affected by to the ONTICK instruction.

RELATED

CLEAR TICK, ON TICK

ERRORS

BAD SYNTAX If any parameters left out

BAD ARGUMENT When timer > 3 or negative or left out

EXAMPLE

The following example clears tick timer number 3, delays for a time, then prints tick timers 0 and 3.

10 CLEAR TICK(3)
20 FOR X = 0 TO 1000
30 NEXT
40 PRINT TICK(0),TICK(3)

 124.6 .425

RPBASIC-52 PROGRAMMING GUIDE

2-113

TIME (function)

Syntax: A = TIME(n)

Where: n = 0 to 4

0 = hours

1 = minutes

2 = seconds

3 = hundredths of a second

4 = seconds since midnight

Function: Returns the hour, minute, second, or hundredths of a second from the real time clock

Mode: Comm and, Run

Use: A=TIM E(1) Returns minutes

Cards: All

DESCRIPTION

A DS1216DM must be installed in the data RAM socket, usually U5. Refer to your hardware manual for

exac t locati on. Th e num erical value of the h our, m inute, o r secon d is retu rned.

TIME(4) returns the seconds plus hundredths of a second since midnight. This is useful when time stamping

an eve nt.

A HAR DWA RE error is returned when the RTC module is missing or bad. Use ONERR to trap for this kind

of error. Error code is 50 at address 101H

RELATED

TIME (comm and)

ERRORS

BAD ARGUMENT When n out of range, negative

HARDWARE RTC m odule missing

EXAMPLE

The following program converts a TIME number into a string.

100 STRING 200,20
110 $(0) = " : : " :REM SETUP FOR HH:MM:SS
120 HR = TIME(0)
130 MN = TIME(1)
140 SC = TIME(2)
150 T = HR/10 :REM use T for temporaries
160 ASC($(0),1) = INT(T) .OR.48:REM 10's of hours
170 ASC($(0),2) = (T-INT(T))*10) .OR. 48:REM 1's
180 T = MN/10 :REM minutes conversion
190 ASC($(0),4) = INT(T) .OR. 48
200 ASC($(0),5) = ((T-INT(T)) * 10) .OR. 48
210 T = SC/10 :REM temp for seconds
220 ASC($(0),7) = INT(T) .OR. 48
230 ASC($(0),8) = ((T-INT(T)) * 10) .OR. 48
240 PRINT "Time:",$(0)

RPBASIC-52 PROGRAMMING GUIDE

2-114

TIME (command)

Syntax: TIME hours,minutes,seconds

Where: hours = 0 to 23

minutes = 0 to 59

seconds = 0 to 59

Function: Sets the time to the real time clock

Mode: Comm and, Run

Use: TIME 18,17,00 Sets time to 6:17:00 PM

Cards: All. Note consideration for RPC-320, RPC-330

DESCRIPTION

Time uses a 24 hour format. Hundredths of a second are set to 0 when TIME is executed.

The RPC-320 and RP C-330 use an optional DS1216DM clock module. This module is shipped with the

clock off to conserve battery power. To turn the clock on, execute the D ATE com mand first. Failure to do so

causes a H ARD WA RE error. DA TE nee d only be done once to turn on the clock. Subseq uent change s to

TIME can be performed without using DATE. Refer to your hardware manual for installation location.

RELATED

TIME (function), DATE (comm and)

ERRORS

BAD ARGUMENT When hours, minutes, or seconds is out of range

HARDWARE Clock module is missing or not turned on. Error code 50 at address 101H

RPBASIC-52 PROGRAMMING GUIDE

2-115

UI0
UI1
Syntax: UIn

Where: n = 0 or 1, is the serial port number

Function: Directs serial input to COM 0 or COM 1 when using GE T and INPU T statements.

Mode: Comm and, run

Use: UI1

Cards: All

DESCRIPTION

UI0 and UI1 can be placed anywhere in a program, allowing RPBASIC-52 to accept input from either COM0

or COM1.

The original BASIC-52 required an assembly language routine to use another serial port. RPBASIC-52 has

done this already.

RELATED

GET, UO0, UO1, INPUT

EXAMPLE

The fo llowin g exam ple prin ts out an d inpu ts data from C OM 1.

100 UI 1
110 UO 1
120 INPUT "Enter name:",$(0)
130 UO 0
140 UI 0

RPBASIC-52 PROGRAMMING GUIDE

2-116

UO0
UO1
Syntax: UOn

Where: n = 0 or 1, is the serial port number

Function: Directs PR INT outpu t to COM 0 or COM 1 serial port.

Mode: Comm and, run

Use: UO1

Cards: All

DESCRIPTION

UO0 and UO1 can be placed anywhere in a program, allowing RPBASIC-52 to accept print to ei ther COM0

or COM1.

The original BASIC-52 required an assembly language routine to use another serial port. RPBASIC-52 has

done this already.

RELATED

UI0, UI1, INPUT

EXAMPLE

The fo llowin g exam ple prin ts out an d inpu ts data from C OM 1.

100 UI 1
110 UO 1
120 INPUT "Enter name:",$(0)
130 UO 0
140 UI 0

RPBASIC-52 PROGRAMMING GUIDE

2-117

USING
U.
Syntax: PRINT USING (format)

PRIN T U.(format)

Where: format

USING(Fn) n is the numb er of significant digits. A m inimum of 3 significant digits are

always printed. Maximum value of n is 8.

USING(#.#) The number of # symbols determines how many significant figures of the

output value will be displayed before and after the decimal point. The

maxim um total num ber of "#" sym bols is 8. Integers (decim als truncated) are

printed when there are no "#" symbols after the decimal point or if no decimal

point is given. If a value cannot be printed in the requested format, RPBASIC-

52 outputs a "?" and prints the value in USING (0) format.

USING(0) The default output format for RPBASIC-52 floating-point values. Displayed

as a decim al integer and fraction if the value is betw een +/- 99999 999 and +/-

0.1.

Function: Used with PR INT to format subsequen t expressions.

Mode: Comm and, run

Use: PRIN T US ING (F3),A

Cards: All

DESCRIPTION

The s ame forma tting ca pabilit y is ava ilable using th e ST R(10 ,...) functio n.

Formatting is "remembered" until it is reset or changed.

RELATED STR

ERRORS BAD SYNT AX - M issing # to the left of the dec imal point or a sp ace betw een USIN G and the le ft

parentheses.

EXAMPLE

110 PRINT USING(F3),PI*100

>run

 3.14 E+2

RPBASIC-52 PROGRAMMING GUIDE

2-118

WDOG
Syntax: WDOG [time]

Where: time = 0, 1, or 2

no parameter = toggle watchdog timer

0 = turn off watch dog timer

1 = set timeout interval to 0.38 seconds

2 = set timeout interval to 2.8 seconds

Function: Resets or sets w atchdog tim er.

Mode: Run

Use: WDOG

Cards: All. Cards use this command in different ways. Refer to your hardware manual to verify operation.

DESCRIPTION

The w atchd og tim er is a su pervis ory fun ction fo r applic ations that ca nnot a fford to " crash" .

WDO G 1 or WDO G 2 enables the watchdog and sets the interval. WDOG is executed periodically by your

program to p revent the card from resetting. WD OG 0 turn s off the watchd og timer.

Different cards m ay use different tim e out periods. Re fer to your hardw are manu al.

RELATED

none

ERROR

BAD A RGUM ENT when time is out of range

EXAMPLE

The fo llowin g exam ple sho ws ho w O NTI CK can be used to reset th e tim er. The watc hdog t imer is set for 2.8

seconds.

10 WDOG 2
20 CLEAR TICK(0)
30 ONTICK 2,200
40 GOTO 40
200 PRINT TICK(0)
210 WDOG
220 RETI

When a watchdo g timeout oc curs, only the CP U is reset. The e ffect is the same as performing a hardware

reset, except a ha rdware reset pu lse is not issued. Digital I/O at J3 does not cha nge. Digital lines L 0 - L8 are

reset to powe r up conditions as is the display port.

RPBASIC-52 PROGRAMMING GUIDE

2-119

XBY
Syntax: XBY(addr)

XBY(addr)=expr

Where: addr = 0 to 65535 (0FFFFH) is a memory address

expr = 0 to 255 is data to save

Function: Read/write external data memory, segment 0 only.

Mode: Comm and, run

Use: XBY(99)=35

Cards: All

DESCRIPTION

XBY retrieves or assigns a value to external data memory. This command is equivalent to PEEKB and

POKEB.

RELATED

CBY, DBY, PEEKB, POKEB

ERROR

BAD ARGUMENT Invalid addr or at tempt to assign an out of range value to a XBY(expr).

EXAMPLE

100 XBY(47536) = XBY(47536) .OR. 3

RPBASIC-52 PROGRAMMING GUIDE

2-120

CONFIG COMMANDS

CO NFIG com man ds con figure v arious I/O to u ser def ined p aram eters.

All CONFIG com mands are unique to RPBASIC-52. There is no equivalent in the original version. Some

comm ands are not available for all cards.

CON FIG AIN

Syntax: CONFIG AIN channel, mode, range

Where: channel = 0 to 7, analog input channel

mode = 0 or 1, differential or single - ended

range = 0 or 1, ±2.5 or 0 to 5 volt input

Function: Determines type of analog input for measurement

Mode: Comm and, Run

Use: CO NFIG AIN 3,1,0

Cards: RPC-320, RPC-330 Refer to your hardware manual for applicability if your card is not listed here.

DESCRIPTION

All inputs are configured for single - ended, 0 to +5V inputs on power up. Inputs, or pairs of inputs, may be

changed to d ifferential and/or ±2.5 v olt input.

Differential inputs use adjacent channels, as described in Chapter 10, Analog Input, Initialization. Inputs are

pseudo-differential, meaning the input signal is measured with respect to ground. See Chapter 10 for more

information.

mode of 1 spe cifies s ingle e nded w hile 0 m eans d ifferen tial.

range = 0, a ±2.5V input is chosen w hile a 1 sets 0 to +5 volt input.

Refer to Chapter 10, ANALOG INPUTS in your hardware manual for examples and configuration information.

ERROR

BAD AR GUMEN T When any parameter is out of range.

RPBASIC-52 PROGRAMMING GUIDE

2-121

CONFIG BAUD

Syntax: CONFIG BAUD 0,baud

CONFIG BAUD 1,baud,rs-485

Where: baud = Baud rate number. See tables below.

rs-485 = Parameters for RS-485 port . See table below.

Specify 0 or 1 for seria l port.

Function: Set baud rates for COM0 and COM 1.

Mode: Comm and, Run

Use: CONFIG BAUD 1,3,OFF

Cards: All. baud code will vary from card to card.

DESCRIPTION

Power up baud rate is 9600 for both ports. Serial param eters change im mediately after this comm and is

exec uted. C omm unica tion pa rame ters are set at 8 d ata bits , 1 stop, n o parity .

Use the table below for COM0 and CO M1 baud code on the RPC-320 and RPC-330:

baud code Baud rate baud code Baud rate

 0 38400 (COM0), 57600 (COM 1) 4 2400

 1 19200 5 1200

 2 9600 6 600

 3 4800 7 300

Notice baud code 0 gives different rates for COM0 and COM 1.

rs-485 configures COM1 for RS-232, RS-422, and 4 wire RS-485. Set jumper W4 as needed. Power up

default is 0, or RS-232 configuration.

rs-485 Configuration

 0 RS-232

 1 RS-422 (transmitter and receiver always on)

 2 RS-485, 4 wire (Tx on during transmit, receiver always on)

ERROR

BAD ARGUMENT When any parameters are out of range.

BAD SYNTAX When any required parameters are missing.

RPBASIC-52 PROGRAMMING GUIDE

2-122

CONFIG DISPLAY

Syntax: CONFIG DISPLAY type

Where: type = 0 to 3, defines the display type

0 = LCD 4 x 40 character

1 = LCD 4 x 20 character

2 = Vacuum florescent 4 x 20 character

3 = LCD - 5003 graphics display

4 = Vacuum florescent 4 x 20, IEEE Centry series

Function: Defines the display type used with D ISPLAY and related comm ands.

Mode: Command, RUN

Use: CONFIG DISPLAY 1 Configures display port and operation for LCD 4 x 20.

Cards: All

DESCRIPTION

The display type must be set in order for the DISPLAY drivers to work properly.

Other kinds of LCD and Vacuum florescent displays may also be used. However, certain options such as

character position ing may n ot work prope rly or at all.

RELATED

DISPLAY, CLEAR DISPLAY

ERROR

BAD ARGUMENT When type out of range.

RPBASIC-52 PROGRAMMING GUIDE

2-123

CONFIG FREQ

Syntax: CONFIG FREQ channel,interval

Where: channel = counter num ber, 0 or 1

interval = number of 5 mill i-second periods between readings. Range is 1 to 255. An

interval of 0 turns off this multitasking routine.

Function: Sets up multitasking to read a counter every interval. The counter is read using the FREQ com mand.

Mode: Comm and, Run

Use: CONFIG FREQ 0,100

Cards: RPC-210, RPC-320, RPC -330 (cards with LSI 7166 counter chip)

DESCRIPTION

Comm and sets up RPB ASIC operating system so FREQ function can operate. This comm and defines a

counter and time interval between counter reads.

Longer interval smooths out readings. Short intervals (interval between 1 and 10) are not recommended.

RELATED

FREQ

ERROR

BAD ARGUMENT channel > 0 or 1 (depending upon the card)

interval > 255

EXAMPLE

See the FREQ command for an example.

RPBASIC-52 PROGRAMMING GUIDE

2-124

CONFIG LINE

Syntax: CONFIG LINE 0,configu ration 0,p ort C

CONFIG LINE 100,configu ration 1,p ort A,por t B,port C

Where: configuration n = port configuration per tables below.

port A = Digital I/O p ort A output data

port B = Digital I/O p ort B output da ta

port C = Digital I/O p ort C output da ta

Function: Configures digital I/O ports for inputs and outputs.

Mode: Comm and, Run

Use: CONFIG LINE 0,1,128

CONFIG LINE 100,3,255,0,240

Cards: All. Check line ranges for your card.

DESCRIPTION

Upon pow er up or reset, digital I/O po rt J3 (lines 100-123) are c onfigured for inputs. Lin es at P6 are

configured for inputs (L0-L3) and outputs (L4-7). Outputs L4 and L5 are low and L6 and L7 are high. The

status of these lines is changed using this command.

There are two digital I/O line number groups on the RPC-320. One group, 0-8, access lines at the terminal

strip on the ca rd. Line num ber 0 is u sed to s pecify these l ines. port C simply specifies which lines are high

and low.

The second digital group is specified as l ine 100 and determines the configuration for digital I /O port J3. An

82C55 is used to interface the 24 digital I/O lines. The 82C55 consists of 3 ports organized as follows:

Port A Eight lines that can be programm ed as all inputs or all outputs.

Port B Eight lines that can be programm ed as all inputs or all outputs.

Port C Eight lines which can be programmed in one group of eight lines or two groups of four lines

as all in puts or a ll outpu ts.

The following table is used for the configuration 0 or 1 paramete r. It determines w hich port, or part of a port,

is an input and ou tput.

configuration 0 Lines 4-7 Lines 0-3 (Upper and lower Port C)

0 Output Output

1 Output Input

2 Input Output

3 Input Input

RPBASIC-52 PROGRAMMING GUIDE

2-125

configuration 1 Port A Port B Upper C Lower C

0 Output Output Output Output

1 Output Output Output Input

2 Output Input Output Output

3 Output Input Output Input

4 Output Output Input Output

5 Output Output Input Input

6 Output Input Input Output

7 Output Input Input Input

8 Input Output Output Output

9 Input Output Output Input

10 Input Input Output Output

11 Input Input Output Input

12 Input Output Input Output

13 Input Output Input Input

14 Input Input Input Output

15 Input Input Input Input

port A, B, and C parameters set the output status. When a port is configured as an input, any value can be

used. When a port is configured as an output, the value may be determined by corresponding a bit output

with a value.

Bit 7 6 5 4 3 2 1 0

Status 0 0 1 0 0 0 1 1 = 23H = 35 decimal

Line s 0, 1, and 5 will g o high while the oth ers wi ll go low . In this ex amp le, port would equal 35 or 23H

(either one will w ork).

Wh en J3 is conne cted to an opt o rack , a '0' at a bi t positio n turns O N a m odule while a '1' turns i t off.

(NOTE: The LIN E com mand rev erses the me aning of '0' and '1' while LIN E # does no t).

The value for an output at port C is compute d in the sam e manne r even if one half is an input.

The follow ing exam ple configures lines at J3 so port A an d B are all outp uts and port C is a ll inputs. With

the high current ou tput installed at U1 2, lines 7 and 8 are 'O N' or low w hile the other high c urrent outputs are

'OFF'. Line 19 will also be low. Lines at port C are pulled high or low according to jumper W7.

CONFIG LINE 100,5,254,130,0

WARNING: When configuring lines for ou tputs using CO NFIG L INE, lines w ill go low m omentarily

(less than 10 micro-seconds) until they are set high again as per the data in the command

line.

Some other lines are affected when CONFIG LINE 0 is executed. These lines are card dependent. Refer

to the cards hardw are manu al under DIGIT AL I/O for mo re inform ation.

RELATED

LINE (both statement and function)

ERROR

BAD ARGUMENT configuration > 15 or negative

port > 255 or negative

RPBASIC-52 PROGRAMMING GUIDE

A-1

APPENDIX A - Network example program

File: NET3XX.BAS

rem RPC-3xx networking
rem Uses COM1 as network port
rem To use com port 0 and get going faster, REM out the following lines:
rem 130, 150, 1510, 1530
rem Line 1510 must still exist, so rem AFTER the line number

rem Change the following lines
rem 160 for COM 0 instead of 1
rem 1000 change COM$(1) to COM$(0)

rem If your card does not have analog output, comment out line 2560

rem command D assumes a display. Adjust the CONFIG DISPLAY command
rem at line 140

rem Demo program is limited to 5 commands. If adding more, change
rem limit check in line 1210

rem Data packet to the card is:

rem <CR>>ncd...ds

rem Where
rem <CR> = carriage return character 0DH
rem > = command signature
rem n = card number. May be number 0-9 or letter
rem c = command. May be number, letter, or combination
rem d...d = data as required for command
rem s = optional checksum of string
rem a ?? means ignore checksum

rem Command types for this demo are:

rem A = set line 8. Data following A is 0 or 1
rem Example: >00A0??
rem B = set analog output channel, data
rem Example: >00B043??
rem ||- 1 to 4 digits of data
rem | - channel no 0 or 1
rem Shows how to convert a string number into one usable by
rem BASIC
rem C = return position from counter 0 or 1
rem Example: >00C0??
rem ||-counter #
rem | - command
rem Shows how to take a "real" number and convert it to a
rem string.
rem D = Send message to display port
rem Example: >00DCheck station 5??
rem E = Power up acknowledge. Used to inform host of reset condition
rem Example: >00E??
rem F = Is everything OK or is there a problem
rem Example: >00F??
rem Command F returns an An. If n = 0, everything OK
rem Error codes in STATUS are set somewhere else
rem Routine clears STATUS when polled

100 STRING 2000,40 :REM allocate memory
120 $(0) = ">00" :REM assign card ID. It is modified at line 150
125 $(3) = ">99" :REM All units go into safety mode

REM set up RS485 port on board for 19200
rem NOTE: this is board dependent. Check your cards manual to make sure

RPBASIC-52 PROGRAMMING GUIDE

A-2

rem 130 CONFIG BAUD 1,1,2

rem set the display type for command D

140 config display 1

rem Read lines 0-3 to determine card address.
rem Card number starts from ASCII '0' and goes up from there.

rem 150 ASC($(0),3) = (lineb(5,2) .AND. 15)+48

REM declare tasking and define conditions
REM To 1000 when either 40 characters are in or a <cr> received

rem 160 ON COM$1,40,13,1000
160 on com$0,40,13,1000

300 GOTO 300 :REM hang out here

REM Handle interrupt here
REM Since all variables are global, local variables used here start
REM with the letter 'o'. This helps prevent inadvertent value changes
REM to other parts of the program

rem 1000 $(1) = COM$(1) :REM get data
1000 $(1) = com$(0)

rem Check for emergency safety mode code

1005 if str(8,$(1),$(3)) = 1 then 5000

REM see if card ID is in this packet
REM If 0 returned, is not this card

1010 IF STR(8,$(1),$(0)) <> 1 THEN RETURN

REM Parse out command. For this demo, assume
REM it is only 1 letter long and starts with
REM capital letter A. If command is negative
REM can return a NAK (negative acknowledge)
REM to sender or ignore it.

1020 OA = ASC($(1),4)-65
1030 IF OA < 0 then 1500

REM Make sure checksum is OK
REM Add up values in string for length - 2

1040 ocksum = 0
1050 ole = str(0,$(1))
1060 for oc = 1 to ole-2
1070 ocksum = asc($(1),oc) + cksum
1080 next

rem strip off excess

1090 ocksum = ocksum .and. 0ffH

REM Get checksum values
REM IF second to last character is a ?, then don't check checksum
REM convert last two characters into decimal

1100 oc = asc($(1),ole-1):REM get first digit
1110 if oc = 63 then 1200:rem if ?, skip rest of checksum test
1120 gosub 1600 :rem convert ASCII to number
1130 och = oc*16 :REM assign high byte first
1140 oc = asc($(1),ole) :rem get last hex digit
1150 gosub 1600
1160 oc = oc+och :rem make checksum value

RPBASIC-52 PROGRAMMING GUIDE

A-3

rem if last two digits don't sum to message, then return a negative
rem acknowledge error and bail out

1170 if oc <> ocksum then $(2) = "N2" : goto 1510

rem Checksum is good

REM If status command, go process it

1200 IF oa = 4 THEN 4000
1210 if oa > 5 then 1500:REM if not in command, is error

REM Check for valid power up acknowledge
REM if not acknowledged, then state so

1220 if oflag = 0 then $(2) = "N3" : goto 1510

rem process command
rem GOSUB's could also be used here. However, goto's are faster as
rem exiting the routine makes a direct branch to the condition

rem Cmdn letter A B C D E F

1240 on oa goto 2000,2500,3000,3500,4000,4500

rem If more commands, check for limit. If over, then subtract command
rem and make another ON GOTO

REM Common return point for successful completion of a command

REM Return acknowledge to sender.
REM Used for commands

1400 $(2)="A"
1410 GOTO 1510 :REM to common output & exit

REM Return negative acknowledge to sender.
REM N1 = unrecognized command
REM N2 = checksum bad
REM N3 = power up not acknowledged. Needs command 5.
REM N4 = bad data
REM N5 = something is wrong. Can add error conditions as needed

1500 $(2)="N1"
1510 rem UO1
1520 PRINT $(2)
rem 1530 UO0 :REM back to main port
1540 RETURN

REM convert ASCII HEX number into a number 0 - 15
REM Enter with oc = ASCII value of number (0-9 or A-F which is 48-
REM 58 or 65 to 70)
REM If problem, oc returns -1. If OK, returns number 0 to 15

1600 if (oc < 48) .or. (oc > 70) then oc = -1 : return
1610 if oc > 58 then 1640

rem value between 0 and 9. Simply subtract 48 and exit

1620 oc = oc-48
1630 return

rem Value should be between A-F

1640 if oc < 65 then oc = -1 : return
1650 oc = oc - 55
1660 return

REM Send back acknowledge

RPBASIC-52 PROGRAMMING GUIDE

A-4

1700 $(2) = "A"
1710 GOTO 1510

rem Bad data

1750 $(2) = "N4"
1760 goto 1510

REM set a line according to data
rem For this example, line 8 is assumed to be controlled

rem Get desired status. Position 5 in string is 1 or 0

2000 oc = asc($(1),5) - 48

rem make sure data is 0 or 1

2010 if oc < 0 then 1750
2020 if oc > 1 then 1750

rem Set line according to input and send back acknowledge

2030 line 8,oc
2040 goto 1700

rem Command B
rem Set analog output
rem Command format: >XXBcdddd??
rem ||||||-dddd = data 1 to 4 numbers
rem || - channel no. 0 or 1
rem | - this command no

rem get the channel no.

2500 oc = asc($(1),5) - 48

rem Data starts at position 6 and could be 1-4 numbers long
rem Extract the last part of the string into $(4)

2510 od =str(0,$(1)) :rem get length of string
2520 od =str(7,$(4),$(1),6,od-7) :rem get only data

rem convert string number into usable number then output it
rem Check limits. If out of range, then return error

2530 od = str(3,$(4))
2540 if (od < 0) .or. (od > 4095) then 1750
2550 if (oc < 0) .or. (oc > 1) then 1750

2560 aot oc,od

2590 goto 1700

rem Command C
rem Return counter value
rem Command format: >xxCc??
rem |-counter number 0 or 1 (RPC-330)
rem (could be 4-11 also)
rem change limit check in 3010 for your card

rem get the channel no.

3000 oc = asc($(1),5) - 48

3010 if (oc < 0) .or. (oc > 1) then 1750

3020 oc = count(oc)

rem convert number to a string and output

RPBASIC-52 PROGRAMMING GUIDE

A-5

3030 oc = str(10,$(2),0,oc)

rem Force letter A to first spot. This is a space as set by format above

3040 asc($(2),1) = 65

rem output string as it is

3050 goto 1510

rem Command D
rem Send string to display
rem Command format: >xxDCheck station 2??

rem NOTE: Position is set by another command (exercise left to
rem the student)

rem Extract the string to display

3500 oc = str(0,$(1)) : rem get length
3510 oc = str(7,$(4),$(1),5,oc-6)

3520 display $(4)

3530 goto 1700

rem Set power up acknowledge flag (OFLAG)

4000 oflag = 1
4010 goto 1700

rem Command F
rem General status of card
rem Syntax: >xxF??
rem Returns An
rem Where n = code or codes of system. 0 = all ok
rem variable STATUS is global and indicates system status

4500 oc = str(10,$(2),0,status)

rem Force letter A to first spot. This is a space as set by format above

4510 asc($(2),1) = 65

rem optionally clear STATUS flag

4520 status = 0

rem output string as it is

4530 goto 1510

rem Emergency or safety shut down
rem Set lines as appropriate here
rem Do not return an acknowledge as message applies to all
rem cards on network

5000 rem shut down code here

5200 return

RPBASIC-52 PROGRAMMING GUIDE

B-1

APPENDIX B - Modem example program

File: MODEM.BAS

rem Modem communication program
rem Based around BASIC-52 software for RPC-320, 330

rem General operation.
rem This program is designed as a receiver. Dialing out from
rem a modem is simply a matter of sending a ATDT <phone no>
rem command and responding appropriately to whatever is dialing.
rem Additional cycles (explained later) must be added to handle this

rem Receiving is a matter of going through a series of steps, or
rem cycles. The first cycle is to detect Ringing message. Then
rem Connect <baud>. After that, a password is entered.
rem Line 2300 sets the password. After 3 fails, it hangs up.

rem Commands are then processed. Processing is done as part of
rem the main loop rather than in the interrupt.

rem Commands are processed at line 2400. At this point the card
rem could be treated as a network, processing commands. A more
rem sophisticated command handler is in the RS-485 demo program. (Appendix A)

Rem ONTICK acts as a communication timer. Should there be a
rem period of inactivity while the modem is on line, it issues a
rem hang up command to the modem. Timeout for this example is
rem 10 seconds. It is controlled by the variable CTIM

rem The program is designed so that on a communication problem,
rem it will hang up and reset the modem. The OK string from the
rem modem is treated as a "ready to receive" indication from the
rem modem. If no OK is received, it will go through a hang-up-
rem reset process every 10 seconds until it receives one.
rem The NOKFL variable is set to 1 if no OK message is received.
rem This is read by the main loop since what to do with an inoperative
rem modem is application dependent.

rem If a NO CARRIER message is received from the modem after connecting,
rem the modem will be reset. If you expect to ever send this string over,
rem modify the program at lines 1500+ else the modem will be reset.

rem Some modem messages such as NO DIALTONE, BUSY, and NO ANSWER are not
rem processed since these are outgoing dependent. However, they can be
rem processed by adding CYCLEs.

rem To run this program "as is", you should have 2 PC's available.
rem This program has DEBUGging print statements throughout.
rem They may be removed as required.
rem One is connected to the card, the other to a phone line through
rem a modem. Configure the modem per the RPBASIC software manual.
rem Connect a modem to an RPC-320, 330,
rem or other software compatible card (one that recognizes ON COM$)
rem to COM 1. Don't forget to put a null modem adapter between the
rem modem and card. Connect a PC or other such device to COM 0.
rem Download this program.

rem Connect the modem to a phone line. Run your other PC's modem
rem program. Run this program on the RPC card. You will see initialization
rem messages and status displayed. You should see RD and SD lights blinking
rem on the external modem. What you are looking for is

rem cycle = 0 atim = 0

rem on the bottom of the screen. Dial up the RPC card from the other PC.
rem You should see a progression of messages such as RING, CONNECT
rem and the CYCLE count will increase. Pay attention to your dial up
rem PC. You should see a short sign on message and a prompt for a

RPBASIC-52 PROGRAMMING GUIDE

B-2

rem password. Enter 'password'. Use lower case. The password is
rem set at line 2300.

rem You are then prompted for a command. Commands for this demo are
rem prefixed with '>03'. The command is a number following the '3'.
rem To return the current analog reading on channel 0, type '>030'
rem You will probably get 0 if there is no voltage on channel 0.
rem To return the status at line 0, type '>031'. You will probably
rem get a 1. A '>032' will disconnect from the line.

rem If you do nothing, the modem will reset by the time atim = 9
rem as printed on the screen. When that happens, the modem disconnects
rem and resets.

rem Other things to consider.
rem If you are going to be sending out data for long periods of time,
rem be sure to change the variable ctim or reset atim periodically.
rem This program is designed to hang up if there is inactivity for a period
rem of time. Default is 10 seconds.

rem CYCLE 4 is the hang up/reset modem cycle. When something sets this cycle
rem in motion, nothing in this program can get it out. CYCLE 4 starts by
rem assuming that nothing is being transmitted out. It does wait a period of
rem time to ensure the time dependent escape sequence gets recognized.
rem A potential problem is in downloading information. Running at 1200 baud,
rem characters are sent out at about 120 characters/second. If you are sending
rem out lots of data, chances are the serial buffer in the card will get full.
rem At this baud rate, it will take about 2 seconds to empty. If you go into
rem CYCLE 4 right after a data dump, the escape sequence will not be recognized
rem immediately. Since CYCLE 4 keeps trying to reset the modem, it will
rem eventually reset it. In the mean time, you may get "strange" data on
rem the receiving end.

rem This program was moderately tested. It recovers from no connects,
rem disconnects, and modem power off/on conditions fairly well. Keep
rem in mind each modem tends to operate a little differently and some
rem adjustments might have to be made. The biggest problem we had was
rem in "dead" times. Manufactures claim they need 1 second of dead time
rem before sending the escape sequence, but we found one needed more. Also
rem you may need to pause a little longer after getting the CONNECT message
rem before sending out a sign on message.
rem We used USR, Practical Peripherals, and "no name" modems.

rem variable definition

rem cycle = communication cycle counter
rem mcycl = main loop multi tasking cycle
rem flag(n) = main task dispatcher flag
rem atim = actual time since last communication (in seconds)
rem ctim = commanded time for timout
rem htim = hang up/reset timer
rem $(0) = input string from com 1 buffer
rem $(1) = working search string in com 1 interrupt routine
rem $(2) = NO CARRIER string constant
rem cia = Communication Interrupt variable A - working variable
rem passw = pass word tries
rem okflg = flag to indicate OK was received 1 = got it
rem nokfl = flag to indicate OK was NOT received 1 = not got it
rem The main loop looks at nokfl and resets it. Reason being is
rem modem may be bad, not powered, or not connected.
rem Application requirements dictate what to do in case of a bad
rem modem. This flag is reset by the main loop. This program
rem is set up to continuously try to reset the modem.
rem nocfg = no carrier flag 1 = "NO CARRIER" string found

rem Variable root tim was used because time is a key word.

rem initialize strings, arrays, interrupts

10 config baud 1,5,0 :rem 1200 baud for this example

RPBASIC-52 PROGRAMMING GUIDE

B-3

20 string 1000,50:rem 20 strings, 50 bytes
30 dim flag(15) :rem flags for main task dispatcher
40 okflg = 0 :rem OK received flag
50 ontick 1,1000 :rem communication watchdog and system timer
60 on com$ 1,49,13,2000 :rem interrupt on 49 chars or <cr>
70 ctim = 10 :rem communication timeout if on line.
80 $(2) = "NO CARRIER" :rem string constant
90 nocfg = 0 :rem no carrier flag
100 htim = 0
110 clear com(1) :rem get rid of any previous stuff

rem Send reset to modem
rem NOTE: If you are allowing for downloads to the card,
rem skip around line 150. This can be done by
rem checking for a flag set in expanded memory (segment 1)
rem If it is set, then don't do card reset.

150 cycle = 4 :rem do modem reset

rem other initialization as needed by the program

rem Main program loop
rem This is a multi-tasker dispatcher. It performs various tasks
rem as dictated by other interrupts or programs
rem the array FLAG is used to indicate a process should be performed

rem For this example

rem flag(0) = send back analog input channel 0 value
rem flag(1) = send back digital 0 value
rem flag(2) = hang up
rem flag(3) through flag(14) are used for other process functions
rem for this example, only the first 11 flags are processed.

200 for mcycl = 0 to 14
210 if flag(mcycl) = 0 then 300:rem when a 1, then do a process
220 if mcycl > 5 then 250

rem mcycl = 0 1 2 3 4 5
230 on mcycl gosub 10000,11000,12000,13000,14000,15000
240 goto 300

rem mcycl = 6 7 8 9 10
250 on mcycl-6 gosub 16000,17000,18000,19000,20000
260 goto 300

rem do mcycl 11-14 or more here

300 next

rem DEBUG

400 print "cycle =",cycle," atim =",atim,cr,

rem if there are other tasks that have to be done, then do them here

500 goto 200

rem ONTICK processing
rem Communication timeouts checked
rem if on line, some communication must be received in 10 seconds
rem Exception processing is: Hang up (waits 3 seconds)
rem Long data send (ctim set longer)

rem If you need to do other things, then add them as needed.

rem Gosub to routine based on current cycle
rem Cycles are:
rem 0 = waiting for RING 1400
rem 1 = looking for CONNECT 1500

RPBASIC-52 PROGRAMMING GUIDE

B-4

rem 2 = looking for password. If ok send log on. If not, tell user 1500
rem 3 = looking for command. If ok, set MCYCLE. If not, tell user 1500
rem 4 = Send esc, look for OK, send hang up, look for OK, send reset
rem look for OK 1600
rem 5 = Send out sign on message after a few seconds delay

rem cycle = 0 1 2 3 4 5 6 7
1000 on cycle gosub 1400,1500,1500,1500,1600,1900

rem other ONTICK stuff

1390 reti

rem cycle 0 waiting for ringing
rem This is idle. No checking is done

1400 return

rem Cycle 1, 2, or 3

rem Looking for CONNECT, password, or command.
rem Look for NO CARRIER flag. If set, then reset modem
rem Check 10 second counter atim and compare with ctim

1500 atim = atim+1 :rem the '1' is changed based on current ON TICK time
1510 if nocfg = 1 then 1550 : rem if no carrier, reset all
1520 if atim < ctim then return

rem no communication received Hang up and reset modem

rem DEBUG

1540 print : print "no CONNECT, password, or command in time"

1550 cycle = 4
1560 htim = 0
1570 nocfg = 0
1590 return

rem cycle 4

rem Wait 2 seconds, send esc, look for OK, send hang up
rem look for OK

rem ATIM value is used to determine what part of cycle
rem 2 seconds are allowed for each step
rem first wait htim=0
rem send esc htim = 2
rem look for OK, send hangup htim = 5
rem look for OK, send reset htim = 8
rem look for OK. got into cycle 0 htim = 11

1600 htim = htim + 1
1610 if htim = 2 then 1650
1620 if htim = 5 then 1700
1630 if htim = 8 then 1750
1635 if htim = 11 then 1850
1640 if htim > 12 then htim = 0 : return :rem if really large, then reset
1645 return : rem if none of the above

rem send out escape sequence. Look for OK

1650 uo 1
1660 print "+++",
1670 uo 0
1680 okflg = 0 : rem reset flag

rem DEBUG

RPBASIC-52 PROGRAMMING GUIDE

B-5

1685 print : print "Sent +++"

1690 return

rem look for OK
rem If have it, send hang up
rem If not, set flag (nokfl) and continue as modem could have
rem been hung up on and lost carrier
rem Send out hang up command any way

1700 uo 1
1710 print "ATH0"
1720 uo 0
1730 nokfl = not(okflg).and.1 : okflg = 0

rem DEBUG

1735 print : print "Sent ATHO."

1740 return

rem Look for OK (must have it). If not there, reset htim=0
rem nokfl set to alert system, and redo cycle
rem Send out reset string to modem. This is a simple one.

1750 if okflg = 0 then htim = 0:nokfl = 1: return
1760 uo 1
1770 print "ATZ"
1780 uo 0
1790 okflg = 0

rem DEBUG

1795 print : print "Sent ATZ"

1800 return

rem Look for OK (must have this one also). If not there, reset
rem htim =0 and redo cycle
rem clear COM(1) to flush out any other erroneous data

1850 clear com(1)
1860 if okflg = 1 then cycle = 0 : return
1870 htim = 0
1890 return

rem Cycle 5 tick processing
rem Send out sign on message after 3 seconds of waiting

1900 htim = htim + 1
1910 if htim < 3 then return

rem print sign on message and request password

1920 uo 1
1930 print "Remote Processing modem demo"
1940 print "Enter password..."
1950 uo 0

rem DEBUG

1955 print : print "Printed RPC sign on message"

1960 clear com(1)

1970 cycle = 2
1980 atim = 0
1990 return

RPBASIC-52 PROGRAMMING GUIDE

B-6

rem ON COM$ processing

rem get current input

2000 $(0) = com$(1)
2010 atim = 0 : rem if anything came in, reset actual com time

rem ignore any <cr><lf>. Check for lf

2020 if str(0,$(0)) = 0 then return

rem if first character is lf, then filter it out

2030 if asc($(0),1) <> 10 then 2060
2040 cia = str(7,$(0),$(0),2,str(0,$(0))-1) :rem get rid of <lf>
2050 goto 2020:rem check for any length of string

rem DEBUG

2060 print : print "Received string:",$(0)," Cycle=",cycle

rem Check for NO CARRIER string. If there, then set flag and
rem continue. Other parts of program may use flag

2070 cia = str(8,$(0),$(2))
2075 if cia > 0 then nocfg = 1

rem process according to current cycle
rem CYCLE is defined as follows:
rem 0 = waiting for RING
rem 1 = looking for CONNECT
rem 2 = looking for password. If ok send log on. If not, tell user
rem 3 = looking for command. If ok, set MCYCLE. If not, tell user
rem 4 = Send esc, look for OK, send hang up, look for OK, send reset,
rem look for OK This routine just looks for OK
rem 5 = send out sign on message after 2 second delay for CONNECT

rem cycle = 0 1 2 3 4 5 6
2080 on cycle gosub 2100,2200,2300,2400,2500,2600

2090 return

rem check if RING message. If so, then set cycle for 1

2100 $(1) = "RING"
2120 cia = str(8,$(0),$(1))
2130 if cia = 0 then return :rem if something else, just ignore it
2140 cycle = 1

rem DEBUG

2150 print "Got RING. To cycle 1"

2190 return

rem cycle = 1

rem check for CONNECT message
rem if not, hang up by setting cycle 4
rem if CONNECT, then wait before sending sign on

2200 $(1) = "CONNECT"
2210 htim = 0
2220 cia = str(8,$(0),$(1))
2230 if cia > 0 then 2270

RPBASIC-52 PROGRAMMING GUIDE

B-7

2240 cycle =4

rem DEBUG

2255 print "No CONNECT received. Input string=",$(0)

2260 return

rem hold off any xmission for 3 seconds before sending sign on

2270 cycle =5
2280 passw = 0

2290 return

rem cycle 2

rem Looking for password.
rem If tried 3 times, hang up

2300 $(1) = "password"
2310 cia = str(8,$(0),$(1))
2320 if cia > 0 then 2350
2330 passw = passw + 1
2335 uo 1 : print "Invalid password. Re-enter" : uo 0
2340 if passw = 3 then cycle = 4 : htim = 0 : passw = 0
2345 return

rem check on length to make sure its all correct

2350 if str(0,$(0)) <> str(0,$(1)) then 2330

rem successful log in. Tell user to put in valid command

2360 cycle = 3
2370 uo 1
2380 print "Password accepted. Enter command"
2390 uo 0
2395 return

rem Cycle 3

rem Process a command. If valid, set flag(n)

rem To make sure no erroneous data looks like a command, all commands are
rem prefixed with ">03". Idea is the likely hood of 4 random characters
rem making a valid command is unlikely compared to just 1

2400 $(1) = ">03"
2410 if str(8,$(0),$(1)) <> 0 then 2450
2420 uo 1 : print "Invalid command. Re-enter"
2430 uo 0
2440 return

rem command is number in 4th position
rem Line 2460 checks for valid command limit

2450 cia = asc($(0),4)-48
2460 if (cia < 0) .or.(cia > 2) then goto 2420
2470 flag(cia) = 1 : rem indicate do this

2490 return

RPBASIC-52 PROGRAMMING GUIDE

B-8

rem cycle 4

rem Look for OK
rem If have OK, then reset cycle to 0
rem If message is not OK, simply leave

2500 $(1) = "OK"
2510 if str(8,$(0),$(1)) <> 1 then return

rem got OK
rem Signal system and let tick timer do next

2520 okflg = 1

2590 return

rem cycle 5
rem send out sign on message after 1 second delay
rem Clear out COM if got here

2600 clear com(1)
2610 return

rem mcycl 0 processing from main loop
rem send back analog channel 0 to modem

10000 uo 1
10010 print ain(0)
10020 uo 0
10030 flag(0) = 0
10090 return

rem mcycl 1 processing
rem Send back digital status from line 0

11000 uo 1
11010 print line(0)
11020 uo 0
11030 flag(1) = 0
11090 return

rem mcycl 2 processing
rem hang up

12000 htim = 0
12010 cycle = 4
12020 flag(2) = 0
12030 uo1
12040 print:print "Hanging up"
12050 uo 0
12090 return

RPBASIC-52 PROGRAMMING GUIDE

C-1

APPENDIX C- ERROR MESSAGES

The RPB ASIC-52 error processor helps identify errors.

When running a program , error messages are expressed as:

ERROR: XXX - IN LINE NNN

NNN Instruction
_______X

where XXX is the type of error and NNN is the program line number where the error occurred. The "______X"

identifies the very approximate location of the error. For example, a BAD ARGU MENT error occurring at line

100 is expressed as:

ERROR: BAD ARGUMENT - IN LINE 100
100 DBY(257)=5
_____________________X

In Command mode, only the error type is printed since there are no line numbers in Command mode.

RPBASIC-52 errors include:

A-STACK

ARITH. UNDERFLOW

ARITH. OVERFLOW

ARRAY SIZE

BAD ARGUMENT

BAD SYNTAX

C-STACK

CAN'T CONTINUE

DIVIDE BY ZERO

I-STACK

MEMORY ALLOCATION

NO DATA

HARDWARE

A-STACK

The argum ent stack pointer is ou t of bounds. Too m any expression s were push ed or tried to pop non -existent data

off the stack.

ARITH. UNDERFLOW

The re sult of a n arithm etic op eration is beyo nd the lowe r limit o f RPB ASIC -52 floa ting-po int num bers.

RPBASIC-52's smallest floating-point number is ±1E-127. An operation such as 1E-100/1E28 would cause an

ARIT H. UN DER FLOW error.

This exam ple produces a correct result:
>?1e-100/le26
 1.0 E-126

RPBASIC-52 PROGRAMMING GUIDE

C-2

This exam ple produces a n expected e rror:

?le-100/le28
ERROR: ARITH. UNDERFLOW
READY

This exam ple produces a n incorrect expo nent:

>?le-100/.9e28

 1.1111111 E -0

ARITH. OVERFLOW

The result of an ari thmetic operation exceeds the upper l imit of RPBASIC-52 floating-point numbers. RPBASIC-

52's largest floating-point number is ± .99999999E+127. An operation such as 1E100*1E28 causes an ARITH.

OVE RFLO W error.

ARRAY SIZE

An array was accessed that is outside the dimension boundaries defined by a DIM instruction. For example:

DIM A(100)
PRINT A(102)

ERROR: ARRAY SIZE
READY

BAD ARGUMENT

The argument of an operator is out of limits. For example, A=AIN(300) generates a BAD ARGU MENT error

since the value assigned by the AIN operator is limited to the range 0 to 7.

BAD SYNTAX

An invalid co mma nd, instruction, or operator or ha ve attemp ted to use a reserve d key word as part of a variable

was entere d. This is a generic " I don't know w hat this is" responce by a com puter.

C-STACK

More control stack memory was used than it has available. The control stack has of 158 byte of memory. A FOR-

NEXT loop uses 17 bytes, and DO-UNT IL, DO-WHILE , and GOSUB each use three bytes. This means you

limited to nine FOR-NEXT loops. Executing a return before a GOSUB, or a WHILE or UNTIL before a DO

instruction, or a NE XT befo re a FOR also generates a C-STA CK error.

CAN'T CONTINUE

A program was edited after stopping.

DIVIDE BY ZERO

A num ber was divid ed by zero or a sta tement suc h as TAN (PI/2).

RPBASIC-52 PROGRAMMING GUIDE

C-3

I-STACK

There is not enough internal stack space to evaluate an expression. Usually this is caused by an excessive number

of parentheses.

MEMORY ALLOCATION

Access ing a s tr ing tha t i s ou ts ide the defined st ring limit s o r ass ign MTOP a va lue tha t does no t contain any RAM.

NO DATA

A REA D instruction does not have valid associated DATA instruction. NO DATA - IN LINE XXX error message

displays a line number where it expected to find the data.

RPBASIC-52 PROGRAMMING GUIDE

D-1

APPENDIX D - Data storage

STRING STORAGE

BASIC-52 stores string variables between MTO P and top of variable space, call VARTO P. String $(0) would be

stored from VARTOP to [VARTOP + (bytes_per_string + 1)]. String $(1) is stored from [VARTOP +

(bytes_per_string + 2)] to [VARTOP +2 * (bytes_per_string + 1)], and so on.

All strings are term inated with a c arriage return (0D H, 13 decim al).

VARIABLE STORAGE

Scaler variables are numbers not in a dimension. Dimensioned or arrayed variables (commonly referred to as

"arrays") are those whose identifier includes a single-dimensioned expression.

Scaler variables: PAR T, A1 , B

Dimensioned va riables: TEMP(5), PRESS(A)

Scalars are stored starting at VARTO P-1, with storage growing down at eight bytes per variable.

FLOATING-POINT FORMAT

RPB ASIC-5 2 stores all floating-point nu mbers in a no rmalized pa cked binary-co ded decim al (BCD) format. All

numbers are normalized, so the most significant digit in a floating-point number is never zero unless its actual

value is zero.

To demonstrate the floating-point format, see how RPBASIC-52 stores 12345678.

LOCATION VALUE DESCRIPTION

X 88H exponent: 81H = 101, 80H = 100, 7FH = 10 -1, etc.

Zero is represented by a zero exponent

X-1 00H sign bit: 00H = positive, 01H = negative

Other bits are temporary values used only during calculations

X-2 78H least significant tw o digits

X-3 56H next least significan t two digits

X-4 34H next most sig nificant two digits

X-5 12H most significan t two digits

So we have .12345678 X 108 which is 12345678.

The PO KEF c omm and stores num bers in RA M in this sam e format. PE EKF e xpects to read a number in th is

format.

RPBASIC-52 PROGRAMMING GUIDE

E-1

APPENDIX E - Software revision history

;V1.02 added

; 24 key keypad scanning

; Took out BELL w hen backspacing beyond beginning of line

; Took out extra CRLF when entering in just a CR for a command.

;V1.03 added

; CARD function

; CO NFIG LINE 100 on ly now re-initia lizes p ort wit hout w riting to serial E EPR OM .

;V1.04 Changed

; Release for RPC-320

;V1.05 Fixed

; BSA VE returne d a hardwa re error when ve rify was bad. In fact,

; save was ok. Caused by RAM and EPR OM pointers getting swapped

;V1.06 Fixed

; LCD graphics hardware CS and reset are reversed in RPC-320. Compensated

; in software.

;V1.07 Fixed

; MTOP was useless in any system, especially a 32K RAM.

; In 32K RAM system, MTOP = 7D FF. This will give user 512

; bytes of free RAM. 128K and 512K RAM versions not affected.

; STR(6,...) broken. Was not popping stack.

;V1.08 Fix

; Variables E and F would get dropped if followed by a space

; Changed token table in MAIN1 and 320_MA20 to add bogus token

; and command name.

; Added delays (nop's) between data strobe writes to LCD display to compensate for faster CPU

; Changed both LCD4x40 and LCD4x20 assembly files

;V1.09 Fix

; STR(7, ...) did not put in a CR into the put string, causing

; longer strings to be printed.

;V1.10 Initial release for RPC-330

; Added (330 only)

; AOT com mand

; COUNT function and command for added counter

; added ON CO M, ON CO UNT, ON LINE, ON KE YPAD for RPC -320, RPC-330

V1.11 11/29/95

Added day of week to DATE command and function

V1.12 12/01/95

Added code to use A tmel 29C040A type flash

RPBASIC-52 PROGRAMMING GUIDE

E-2

V1.13 01/12/96

Added code to support IEE centry series display (3602-100-05420)

Includes CONFIG DISPLAY 4

Added P RINT #port

V1.14 03/28/96

Fixed bug in ON COU NT. Returns error for lines > 100

V1.15 06/26/96

PEEK $ could cause basic to lock up under right conditions.

V1.16 02/18/97

ON LINE OFF could cause p rogram to lock up i f runn ing ON COM.

Syntax error when DISPLAY used with IF-THEN-ELSE.

Added PEE KF and PO KEF com mands.

V1.17 04/16/97

Fixed keypad debounce. Speed up by about 1%.

V1.18 08/05/97

PRINT sends a CR LF seque nce seem ingly at random when printing from both ports a nd trying to print a

variable.

V1.19 12/01/98

Added FREQ and CONFIG FREQ.

V1.20 08/18/99

Pointer to baud ra te table not getting se t properly

V1.21 11/25/00

Added SPI in and out commands

