RPBASIC-52 PROGRAMMING GUIDE

COPYRIGHT

Copyright 1996 - Remote Processing Corporation.
All rights reserved.

The software described in this manual is furnished
under license.

The contents of this manual and the specifications
herein may change without notice.

Remote Processing Corportation
7975 E. Harvard Avenue
Denver, Co 80231

Phone: 303 690 1588

Fax: 303 690 1875

email: info@remotep.com
Internet: www.remotep.com

Document order # 1084

Revision 1.4

PRODUCT SUPPORT

If you have a question about RPBASIC-52 and
cannot find the answer in this manual, call us at the
number listed below during normal business hours.

When you call, please have the following at hand:
Y our RPBA SIC-52 programming guide

Y our card hardware manual
A description of the problem

RPBASIC-52 PROGRAMMING GUIDE

TABLE OF CONTENTS
PREFACE i
MANUAL CONVENTIONS
Symbols and Terminology
Basic Interpreters.
Commands................oo.u..
Functions
LineNumbers
Operators
Tasking Statements
EXpressions
WRITINGAND EDITING PROGRAMS .
Uppercase/Lowercase
Variablesand Constants
Subroutines
Passing Variables Between Programs . .
Addresses.
Arrays ...
Stringso
OPERATING MODES
Command and Run Modes
Autorunning Programs
Stopping Program Execution
X-ON and X-Off Flow Control
STORINGPROGRAMS
HARDWARE AND SOFTWARE
INTERRUPTS
MULTITASKING CONSTRUCTS
COUNT Multitasking
Serial Communication Multitasking . . .
ON LINE Multitasking
ON COUNT M ultitasking..........
Assembly Language Interface
Assembly language development
environment
OPERATORS
ARITHMETIC OPERATORS
OBSOLETE and MODIFIED
COMMANDS
COMMAND GROUPS

COMMANDS

CLEARCOM 15
CLEARDISPLAY ... i 16
CLEARTICK i 17
CLEARKEYPAD 17
COM 18
COMS . . 19
CONT o 20
COS 21
CR . 22
COUNT (statement) 23
COUNT (function) 24
DATA 25
DATE (function) 26
DATE (statement) 27
DBY 28
DIM 29
DISPLAY .. . 30
DO-UNTIL ... 33
DO-WHILE 34
END .. 35
EXECUTE i 36
EXP . 37
FOR-TO-STEP-NEXT 38
FREE i, 40
GET 41
GOSUB 42
GOTO .ot 43
IDLE .. 44
IFTHENELSE 45
INPUT ... 46
INT 47
KEYPAD ... i 48
LD@ ..o vioti e 49
LEN . 50
LINE (Function) 51
LINE# (Function) 52
LINEB (Function) 53
LINE (Statement) 54
LINE# (Statement) 55
LINEB (Statement) 56
LIST .o 57
LISTH .o 58
LOAD ... 59
LOG .. 60
MTOP .. 61
NEW .. 62
NULL e 63
ONCOMS$ 64
ON COUNT ... 65
ONERR i 67
ONGOSUB ... 68
ONGOTO ..ot 69
ONITR .. 70
ONKEYPAD i 72

RPBASIC-52 PROGRAMMING GUIDE

ONLINE 73
ONTICK ... 75
PEEKB i 76
PEEKF 77
PEEKW 78
PEEKS 79
Pl 80
POKEB i 81
POKEF 82
POKEW 83
POKES e 84
POP . 85
PHO. ... 86
PHL. .. 86
PRINT 87
PRINT #, 87
P 87
2 87
PUSH 88
PWM 89
READ ... 90
REM ... 91
RESTORE 92
RETI ..o 93
RETURN 94
RND .. 95
SAVE ... 96
SGN 97
SIN 98
SPC . 99
STOP .o 100
STR .. 101
STRING 105
SOR . 106
ST@ .o oot 107
TAB 108
TAN 109
TICK 110
TIME (function) 111
TIME (command) 112
UID .o 113
ULl o 113
UOOD .. e 114
UOL .. 114
USING i 115
U, o 115
WDOG ... 116
XBY 117
CONFIG COMMANDS 118
CONFIGAIN i 118
CONFIGBAUD 119
CONFIG DISPLAY o, 120
CONFIGLINE 121

APPENDIX A - Network example program

APPENDIX B - Modem example program

[-STACK .
MEMORY ALLOCATION
NODATA ... e
APPENDIX D - Datastorage
STRING STORAGE
VARIABLE STORAGE
FLOATING-POINT FORMAT

APPENDIX E - Software revision history

RPBASIC-52 PROGRAMMING GUIDE

PREFACE

This programming guide is for Remote Processing
controllers using RPBASIC-52 language. Itwas
derived from Intel MCS-51 BASIC, V1.1. Several
command extensions and features have been added
to effectively gpeed up command execution.

@ Buffered serial ports. Received characters are
buffered to 256 characters. PRINT strings are
put into a256 character buffer, making it much
faster.

@® Multi-tasking constructs such as ON LINE, ON
COM, ON COUNT, and ON KEYPAD. Lines
and keypad are monitored at assembly language
speed on every 5 mstick time. This speeds up
program execution because the main program
no longer has to monitor these points.

@ Software commands directly support hardw are.
DATE and TIM E work with the real time clock.
AIN reads a voltage while AOT outputs one.

Some cards do not have all hardware features so do
not support all of the commands. Cards supported or
exceptions arelisted with each command. In some
cases you must refer to your hardware manual for
exact ranges.

A few original BASIC-52 commands have been
removed. These commands w ere oriented around
specific registersin the 8052 chip or a specific
design. Forexample, the PROG command assumed
codeis stored in an EPROM. Remote Processing
cards use a flash EPROM which uses a new
programming algorithm. The PROG command was
replaced with SAVE.

MANUAL CONVENTIONS

Information appearing on your screen is shown in a
different type.

Example:
RPBASI C-52 V1.0
Copyri ght Renmote Processing (1995)
Bytes free: 27434

Symbols and Terminology
<xxx> Paired anglebrackets are used to indicate a
specific key on your keyboard. For
example, <esc> means the escape key.
expr Term meaning a num ber, simple
variable, or mathematical expresson
involving variablesand numbers. The
following are valid expr:

453
B
CYCLE
B*45
C*D+54
INT(D)

expr can be another function.
Complexity of exprislimited by
available stack memory. Usually thisis
7 levels of parentheses.

For clarity, expr may be another name
such as position, channel, and so on.

italic Italicized variables require an

expressionor value. For example:

AIN(channel)
KEY PAD (function)

Ellipsis (...) follow an instruction w hich optionally
accept more data.

DATA data[,data][,data] ...
READ variable[,variable] ...

Optional portions of an instruction are enclosed in
brackets[]:

DISPLAY option[,option][,option]

RPBASIC-52 PROGRAMMING GUIDE

Basic Interpreters

There are several ty pes and levels of interpreters. A
slow, very basic type of interpreter figures out what
each command is supposed to do during run time. A
token-based interpreter, such as thisbasic, is much
faster. Thistype examines each program lineasitis
typed in, figures out w hat it should do, and converts
it to astring of Basic tokens mixed with text. A
token is a single character that represents a
command. For example, an ASCII value of 89H
representsthe PRINT command.

After a lineis processed, it is stored in memory.
When you type the RUN command, each program
lineis scanned. A token causes a branch to an
assembly language routine which carries out the
required action.

ELEMENTS OF A BASIC PROGRAM

Commands

Commands direct or perform an output action.
Examplesare PRINT, SAV E, POKE, and LOAD.
Commands do not return a value used for
computation.

Functions

Functions return a value used for computation.
Examplesare AIN, PEEK, SIN, and COM $.
Functions do not cause a change in an output.

Line Numbers

Program lines begin with a unique line number.
Each line number may contain one or more Basic
statements separated by a colon. Line numbers are
in the range of 1 - 65535.

Operators

Operators act on or convert numeric or string data.
These include arithmetic (+.-,*, and /), natural
logarithmic (base "e"), trig (SIN, COS), relational
(>, <, or <>), logical (.AND., .OR., XOR.), and
string (ASC, STR) functions. Special operators
control the hardware-gecific features of RPBASIC-
52 such as interrupts, timers, counters, and direct
read/write of 1/0 ports.

Tasking Statements

Tasking statements define a condition and execution
location when a condition is met. Statements
include ON COM $, ON LINE, ON COUNT, and
ONITR. Programs executed as a result of these
statements are treated as subroutines. The only
difference between a tasking routine and one called
by a GOSUB is the tasking can be called at any
time.

Expressions

An expression is a combination of instructions,
operators, data (constants, arrays or strings) and
variables which, when evaluated by Basic, is
equivalent to asingle numerical value. Many Basic
commands accept expressions as w ell as explicit
data. Expressions which are used by commands and
functions are also called arguments.

WRITING AND EDITING PROGRAMS

Program development takes place on your PC using
your word processor or the RPC card. Programs
from your PC are downloaded using a serial
communication program.

Each program line can contain at most 79 characters.
Program linescan be entered in any sequence.
RPBA SIC-52 properly orders line numbers.

Multiple statements on a single line are allowed
when statements are separated by colon (:) and do
not exceed atotal of 79 characters per program line.
Ending a program line with a colon may cause a
program to hang.

There are two ways to write Basic programs. The
first way isto directly type in the program to the
card. All standard Remote Processing cards have a
means of storing programs to a flash type EPROM .
The second way is use atext editor and download
the resulting file to the system. Just be sure to save
filesin DOS text format.

Downloading programs means transferring them
from your PC (or MAC or terminal) to the card.
Uploading means transferring them from the card
back to the PC.

When uploading or dow nloading files, select A SCII
text format. XMODEM, YMODEM, or other
formats are not used. RPBASIC-52 does not know
when you are typing in a program or if something

RPBASIC-52 PROGRAMMING GUIDE

else (laptop or mainframe) is sending it characters.
The upload and download file does not contain any
special codes; they are simply ASCII characters.

Uploading programs is simply a process of receiving
an ASCII file. You or your program simply need to
send "LIST" to rece ve the entire program.

Downloading a program requires transmitting an
ASCII file. Asyoutypein (or download) aline,
RPBASIC-52 tokenizes that line. The time to do
this depends upon its complexity and how many
lines of code have been entered.

RPB ASIC-52 must finish compiling aline before
starting the next one. When aline is compiled, a">"
character is sent. This should be your terminal
programs pacing character when downloading a
program.

If your comm unications program cannot look for a
pacing prompt, set it to delay transmission after each
lineissent. A 100 msdelay is usually adequate, but
your program may be long and com plex and require
moretime. A result of short transmission timeis
missing or incomplete program lines.

A technique used to further program documentation
and reduce code space is the use of comments
(REM) in adownloaded file. For example, you
could have the following in afile written on your
editor:

REM Check position

REM R ead output from the pot and
REM calculate the position

2200 a = ain(0) :REM Get position

The first 3 comments dow nloaded to the card
areignored. Similarly, the empty lines between
comments are also ignored. Line 2200, with its
comment, is a part of the program and could be
listed. The major penalty by writing a program this
way isincreased download time.

Notice that you can write a program in lower case
characters RPBASIC-52 translates them to upper
case.

Some programmers put "NEW" as the first line in
the file. During debugging, it is common to insert
"temporary” lines. This ensures that these lines are

gone. Downloading time is increased w hen the old
program is still present.

If you like to write programs in separate modules,
you can dow nload them separately. M odules are
assigned blocks of line numbers. Start up code
might be from 1 to 999. Interrupt handling (keypad,
serial ports) might be from Iines 1000 to 14 99.
Display output might be from 1500 to 2500. The
programmer must determine the number of lines
required for each section.

RPBASIC-52 automatically formats a line for
minimum code space. For example, you could
download the following line of code:

10 fora=0to5

When you listed thisline, it would appear as:

10 FOR A=0 TO 5

Spaces are displayed but not stored. The following
line:

10fora = 0 to 5

would be compressed and displayed as in the second
example above. Spaces areremoved. However,
spaces as part of aremark or PRINT are not
removed.

RPBASIC-52 contains no line renumbering
capability.

RPBASIC-52 contains a rudimentary line editor
which allows editing a program line until a carriage
return is sent. The rubout or backspace key can be
used to delete characters working backw ards form
the current character. After alineis entered, it
cannot be edited; you must enter an entire new line.
Deleting an undesired line is done by typing the line
number followed by a carriage retum. RPBASIC-52
automatically deletes all such lines.

Uppercase/Lower case

RPB ASIC-52 is generally not case-sensitive.
Program or command lines may be entered in
lowercase or uppercase; however they are (with
some exceptions) converted to uppercase. The case
of text in remarks and strings is preserved.

RPBASIC-52 PROGRAMMING GUIDE

Variables and Constants

More than 25,000 unique variable or congant names
may be defined. Names may be up to eight
charactersin length and must begin with a letter
between A -Z (no numbers or special characters).
The rest of the name may contain numbers or letters
and include the underline character.

All numeric variables are floating point. Variables
cannot be declared as integer or double precision.
RPBASIC-52 supports eight digits plus sign and
exponent. Extradigits are simply discarded. The
range of valid valuesis = 1E-127 to
+0.99999999E+127.

Names are identified by the first and last characters
and its length. Identical length names with identical
first and last characters are considered the same.
PUM P_42 and PRIM ER2 are consider ed the same.
The way to correct thisis to change the name length
or first or last character.

Variable names longer than two characters require
more time to process. Once avariable nameis
declared, it can only be erased by the CLEAR
statementor by LOADing in a new program.

It is possible to have variable names longer than 8
characters A problem is the name length isstored
partly as amodulo 256 number. What it boilsdown
to is avariable may or may not berecognized as
unique. The Basic considers FEED_BIN_01 and
FEED_BIN_11 as the same variable.

The original BASIC-52 had a bug w here the variable
name 'F' was erased if it was the last letterin a
variable followed by a space. RPBASIC-52
corrected this.

Watch out for comm ands embedded in variable
names. FORM _5 containsthe command FOR. A
BAD SYNTAX error isusually returned in these
instances. The statement FORM_5=BOTTOM does
not return an error but interpretsitas

FOR M _5=BOT TO M

The key isto look at your statements as they are
printed onthe screen and make sure they are what
you intended.

Valid variables names are:

CA5, DA15_679, PUMP_A, VALVEO2,

A(10),

SI ZE(5), ABC_

Invalid variables, which may include embedded
commands include:

4C, C$0, GOTOE, FRM #XYZ, _ABC
Constants are literal values. These are "known"
values as opposed to variables which can be
assigned any value, usually by a function. Constants
may be numeric or string. To RPBASIC, thereisno

difference between the two.

Constants are expressed as integer, decimal,
hexadecimal or exponential floating-point. The
range of valid values are:

+ 1E-127 to = .99999999e+127

Using constants instead of a number speeds up
execution by at least 5%. For example, use

10 CH = 5
20 A = AIN(CH)

instead of
20 A = AIN(5)

Variables and constants are expressed as follows:

A=5 I nteger formt
A =53 Deci mal format

A = O0ACH Hexadeci mal for mat
A = 1.4E3 Exponenti al

RPBASIC-52 supports eight sgnificant digits plus
and ex ponent and truncates any extradigits.
Hexadecimal constants with a leading alpha
character must be preceded by aleading zero. If you
fail todo this, RPBASIC-52 interpretsthem as
variable names.

All hexadecimal constants are followed by atrailing
"H" (OFFH for example). A "0" prefix is necessary
when the first number is a letter (A -F).

Certain logical operators, such as.NOT., . AND.,
.XOR., and .OR., assume a 16-bit argument such as
OFFFFH. If you supply fewer than 16 bits it retums
a 16-bit value based on the assumption the
unsupplied most significant bits are zero.

Subroutines

Use of subroutines tends to make programming
more modular and easier to follow. The number of

1-4

RPBASIC-52 PROGRAMMING GUIDE

subroutines is limited to the amount of intemal stack
space. Usually thisisabout 35 subroutines, but can
go down if FOR-NEXT loops are active. Thisis
sufficient tohand e al multi-tasking (ON LINE, ON
COUNT, ON KEY PAD, etc.) and several levelsof
subroutines.

Most complex programs tend to have a maximum of
7 nested subroutine levels. Usually the maximum is
4.

Passing Variables Between Programs

All variablesin RPBA SIC-52 are global. This
means any routine can modify any variable at any
time. When a new program is loaded using
EXECUTE, variables are erased.

Values can be passed between programs using any
variations of PEEK and POKE statements.

Addresses

Addresses are specified as either decimal or
hexadecimal numbers. Hexadecimal addresses with
aleading alpha character need a preceding zero
otherwise they will be interpreted as variable names.

100
110

POKEB, 1, 1000H, 15
A = PEEKB(1, 1000H)

Memory addresses range from 0 to OFFFFH and
segments from 0 to 7. A segment represents a 64K
block of memory. Programs and RPBASIC-52
variables reside in segment 0. V ariables are
generally stored in segment 1 and higher.

Ext.

RAM
m — 51K Data

Area

RPBASIC- K

5 BASIC

— 3K
Program
0 Area

RPBASIC-52 Memory Map

Basic program area can be 32K or 64K, depending
upon the amount of RAM installed.

Arrays

Arrays are single dimension and start with element
0. They are dimensioned using the DIM statement.
Each variable may have up to 255 elements (0 to
254). Undimensioned arrays default to 11 elements,
variable (0) through variable (10). Naming
conventions used for scaler variables apply to arrays.

Strings

Memory is dlocated to strings using the STRING
command. Thereis no power up default. Up to 255
strings, identified as $(0) through $(254) are
available.

To use strings, you must first determine the
maximum length of any one string and then the
maximum num ber of strings. Using the formula

(bytes/string + 1) * number of strings + 1
returnsthe number of bytes to allocate.

The ASC, CHR, and ST R commands are used to
evaluate and manipulate strings. Text assigned to a
string is enclosed in double quotation marks:

100 STRI NG 1000, 40
110 $(0)=">03"

RPBASIC-52 PROGRAMMING GUIDE

OPERATING MODES

Command and Run M odes

RPBASIC-52 operates in two modes, Command and
Run. Command mode is the direct, interactive mode
accessed when RPBA SIC-52 is not running a
program. The Basic console prompt ">" indicates
that Basic isready for Command mode input.

Run mode is when the processor is actively
executing a Basic program. Some commands (such
as SAVE, LIST, LOAD) can only be executed when
the processor isin command mode. Most Basic
instructions can be executed in either Command or
Run mode.

In Command mode, LOAD selects a Basic program
from the flash. The RUN command then causes the
selected program to execute. Within aBasic
program, the EXECUT E instruction isused to allow
the currently running program to call another sored
program. A number of programs may be available
to run depending uponthecard and flash EPROM
size installed. Refer to your hardware manual for
more information.

Autorunning Programs

Programs may automatically load and run on
powerup or reset when a specific jumper isremoved
on the card. Refer to your card's hardware manual
for more information on jumper location.

When autorun is enabled, aLOAD 0, RUN sequence
is performed on power up or reset. Programs are
chained using the EXECUTE command.

Stopping Program Execution

<Ctrl-C> haltsthe execution of a program and forces
the processor into Command mode (unless<Ctrl-C>
has been disabled). Operation can be resumed by
typing the CONT command. The STOP instruction
stops a running program; execution resumes with a
CONT command.

Sometimesiit is desirableto not stop program
execution. To disable <Ctrl-C>, execute:

DBY(38) = DBY(38) .OR 1
X-ON and X-Off Flow Control

Serial output can be stopped with <Ctr-S> (X-OFF),

which halts output to the console serial port only;
<Ctrl-Q> (X-ON) restartsit. You can use this
feature to prevent screens of output data from
scrolling by too quickly to read. After you type a
<Ctrl-S>, Basic halts program execution if it is
encountered during a PRINT command until it
receives a <Ctrl-Q>. You can also reduce the srial
port baud rate or use the NULL command to slow
down the output of console data. Be careful of the
NUL L command. Some terminal programs print a
space character instead.

Characters are buffered from the serial port.
Therefore an additional 256 characters may continue
to print after a<Ctrl-S> is sent.

WARNING: Program execution halts during a
PRINT when an X -OFF is
received until aX-ON isreceived.
This means no other Basic
commands are executed. Multi-
tasking interrupts are recognized
but not executed until after the

PRINT statement is finished.

To determine if X-OFF is active (printing halted)
before executing a PRIN T statement, check address
38, bit5. If high, X-OFF is active.

100 I F (DBY(38) .AND. 32) = 0 THEN 200
Normally the result of the above test isO (no X-OFF
received) and the program branches to line 200. Of
course, if X-OFF is received during a PRINT
command, program execution is suspended until an
X-ON isreceived. To clear X-OFF (dueto a

protocol you are using), put the following line in:

120 DBY(38) = DBY(38) .AND. ODFH

STORING PROGRAMS

RPB ASIC-52 programs are stored in non-volatile
flash type EPROM . The SAVE command is used to
write programs from RAM while LOAD retrieves
them into RAM. Depending upon the card and the
EPROM typeinstalled, up to 8 programs can be
saved and loaded. Refer to your card's hardware
manual for specific programming information.

RPBASIC-52 PROGRAMMING GUIDE

HARDWARE AND SOFTWARE
INTERRUPTS

RPB ASIC52 generates two kinds of interrupts:
hardware and software. Hardware types are those
generated by a voltage change and go directly to the
processor. Software types require program execution
and set memory flags that areread by some other
program.

NOTE: Not all products support all or the same
interrupts. Make sure the "Cards:" category
in each command lists your card or refer to
your hardw are manual.

There are six interrupts in RPBASIC-52, verson 1.11
and later. In the unlikely scenario that all interrupt
conditions aremet at exactly the same time, they
would be serviced in the following order:

ONTICK Periodic
ONITR External line
ON COUNT Counter

ON LINE Line change
ON COMS$ Serial input
ON KEYPAD Keypad

Interrupt priority is based on hardware or software
type. ONTICK and ONITR are considered hardware
types Should either one of theseinterrupts become
active, ON COUNT, ON LINE, ON KEY PAD, and
ON COMS$ interrupts are not run until either oneis
finished. If an ONTICK interrupt isrunning, an
ONITR interrupt is not serviced until ONTICK is
complete. ONTICK and ONIT R have the highest
priority.

ON COUNT, ON LINE, and ON COM $ interrupts
are serviced after ONT ICK and ONIT R are complete.
Should any these last three interrupts occur
simultaneously, ON COUNT would be executed first.
However, if any of these three interrupts occur after
one has started, then it would take priority.

Interrupts occur any time during program execution.
The RPBASIC operating system sets appropriate
flagsindicating which kind of interrupt needs
services. At the end of the current statement it checks
these flags. The time interval between the actual
interrupt and start of the interrupt routineis called
latency.

Latency varies agreat deal, depending upon the type
of interrupt and command currently executed. A

"typical” timein RPBASIC islessthan 1 ms.
However, it can be as short as several micro-seconds
to several seconds. Thereason it can take so long is
due to the Basic subroutine. Suppose an ONTICK
interruptisin progress and it iswritten it takes
several secondsto complete. Sinceit isthe highest
priority, all other interrupts are locked out. The best
way to correct this situation is to make all interrupt
routines as short as possble. Thisis handled by
setting a flag usng a variable in the interrupt routine
then exiting. Then at some other non-critical time,
the interrupt is serviced.

WARNING: RPBASIC-52 offers aopportunity
for all interruptsto occur
simultaneously. It can handle all 21
interrupts simultaneously.

However, it cannot handle them
when they occur at arate faster than
they are serviced. Servicing all 21
interrupts requires a minimum of 21
ms. Ifinterrupts consistenly come
in fager than they can be handled,
the program will stop and a control
stack error returned.

Whenever an ON COUNT or ON LINE multitasking
command is enabled, overall program speed slows
down. If all ON COUNT and ON LINE interrupts
were enabled (but lines were not changing), program
speed dows down by about 6%.

RPBASIC-52 PROGRAMMING GUIDE

MULTITASKING CONSTRUCTS

COUNT M ultitasking

RPBASIC-52 on the RPC-3X X series of cards can
count pulses while a program is running. Checking
and counting is performed at assembly language
speed during each system tick time (every 5 ms).
This capability effectively speedsup program
performance and simplifies programming.

This section describes only software counters on the
card. Hardware counters are in a separate category
are discussed in the hardwar e section of the card's
manual .

Just about any valid digital 1/0 line can be designated
as a counter input. Exceptions are interrupt inputs,
keypad, and display lines. Evenif adigital line is an
output, it can be designated as a counter input. This
is useful in dtuation whereyou may want to limit or
keep track of the number of pulsesto a motor,
solenoid, or lamp.

Eight software counters are available. They are
numbered 4-11. Counters 0-3 are reserved for any
hardware ones that may or may not be on your board.

Counting is enabled as soon as aline is designated as
acounter using ON COUNT. The digital lineis
sampled every 5 ms. When it goes from a high to low
state, its counter isincremented. A line must be
sampled at a high state before it can be counted again.
A line must be at a high and low state for a minimum
of 5 ms each to ensure detection. In theory the
maximum counting rate is 100 Hz. However, due to
other multitasking events(mainly serial ports),
effective maximum rate is about 95 Hz assuming a
perfect squarewave.

Thereare two commandsusedin COUNT
multitaking: COUNT and ON COUNT. Notice
there are two COUNT commands. Oneis afunction,
which returns avalue. Thisisthe one used by the
software counters. The other COUNT command is a
statement, which writes a value to a hardware
counter. Thisisnot used by the software counters.
Software counters cannot be preset.

ON COU NT declares or clears a multitasking
process. T here are three variations of this command.
Referring to the ON COUN T command in this
manual, the first syntax defines the digital line to
count, number of pulsesto count before executing a

subroutine. When the specified number of pulsesis
reached, the counter resets and a count interrupt flag
is set. Should a higher priority interrupt be executing,
the count subroutine is delayed until the higher oneis
finished. The COUNT function is not usually used in
conjunction with this version.

The second syntax simply declares a line for
counting. Usethe COUNT function to return the
number of pulses atthe line. When the count reaches
65,535 it rollsover to 0. Toreset or clear a count,
simply re-declare the ON COUNT statement for that
line.

The third syntax shuts off multitasing for that
counter.

The ON COUNT command can be used to expand
the number of lines used as an ON LINE command.
The limitation here is an interrupt is generated only
when aline goeslow. Set the countto 1 in the ON
COUNT declaration.

Serial Communication Multitasking

ON COM $ defines a program branch when either a
specific char acter or number of charactersis met.
Criteriaare specified in the ON COM$ statement.
When the criteria is met, the incoming data is referred
to as a pack et.

This statement is especially useful in a networking
application usng the RS-485 serial port. Other
devices, such as modems or scales can be used to
generate an interrupt using RS-232. All serial ports
can use ON COMS.

Data packets are retrieved using the COM $ function.
In RS-485 networking applications, the STR(8,...)
function is useful for determining its address.

Two serial application programs are in this manual.
The first program is a simple RS-485 network
communication handler, shown in Appendix A. The
second uses a modem to auto receive and isin
Appendix B.

The RS-485 network handler is set up as a master-
slave protocol. Slaves " do not talk unless spoken to".
The host transmits to all receivers All receivers
transmitters go to the hosts receive line. The host
does not trangmit until it receivesa response from a
node or atimeout isreached.

RPBASIC-52 PROGRAMMING GUIDE

PC owo
(Host) ﬁ

j D "
devices

g

[

] R——
.

rrrrr

There are many communication protocols. For this
example, the protocol looks something like this:

>03MB1

The protocol starts with the <cr> character. This
character synchronizes all units and alerts them that
the next few characters coming down are address and
data. Inthiscase, ">03" is the nodes address. Next
follows a command (M). Depending upon the
command, data may or may not follow. An optional
checksum may follow. The figure below shows the
elements in a data packet.

Command Checksum

Address Data

Terminator

The response depends upon the nature of the
command. Suppose the command M means "return
door switch status". The card could read the port and
respond with Al<cr>. The first letter A isan
acknowledge. Data, 1, indicates a high.

Errors are returned with the letter N (negative
acknowledge) followed by a number. The number
identifies the general error type.

The program in Appendix A can beused on any of

the RPC-3xx sries cads. Refer to this program for
the following description.

The program starting at line 1000 is the network
command handler. Line 1000 gets the data packet.
Line 1010 determinesiif it is meant for thiscard.

Commands are sorted, or parsed out beginning at line
1020. For this example, commands are assumed to
begin with the letter 'A'. By subtracting the ASCI|
value of A, we set up the ON GOTO structure to
quickly handle each command type. This sample
assumes 5 commands. If more are desired, another
ON GOTO can be used. The start of the statement
could read: ON OA-5 GOTO

linenum ber,linenu mber,linenumber...

Command types can be broken into two groups: The
first group performs an action such as setting a line,
outputting to the display, or begin a complex timing
process. The second group is a function, which
returns data. This data can either be raw, such as a
line status or voltage input, or processed. Processed
data can be averages, converted values (feet/minute),
operator input from a keypad, or a status report (such
as OK) to determine if the board is there and
functioning. Theintent of these commands isto show
how data is converted from string to number or
number to string.

This example uses the following commands:

Command Associated Function
Data
A lor0 Set line 8
B line, analog Motor speed
output O to
4095
C 0-1 Position from counter
D String Print to display
E (none) Power up
acknowledge
F (none) General status

Command E is very useful to implement in situations
where thehost does not know if a unit reset (due to a
power surge or something). The host may make
certain assumptions about the status of a unit and
continue to issue commands based on invalid
assumptions. Lines that were set before may not be
set.

This program is written so that no command is

RPBASIC-52 PROGRAMMING GUIDE

processed unless the host "knows" this node has just
reset. Any valid command, unlessitis"E", returns a
"N2" negative acknowledgement. The host
recognizes thisas a power up condition. Line1220
checks for avalid power up flag.

Command F could return any number of status
conditions. The way it isimplemented here, datais
returned to indicate the type of error. A O return
indicates things are just fine. The type and value of
data returned will depend upon the number of error
conditions. If error conditions were binary weighted
(1, 2, 4, 8...) then the receiver could determine
exactly what errorsare inthe system.

A unique address in the message p acket, >99, tells all
units using this program to go to a'safety’ mode. Itis
used for emergency shut down situations. Nodes do
not reply to thiscommand. The program example
does a simple return as your application determines
appropriate response. The advantage to using this
command is in emergency situations all units get the
message in under 50 ms. It could tak e consider ably
longer, perhaps 1 second in a 20 node system, to poll
all units.

A networking factor is communication time. Longer
messages tak e longer to process. At 9600 baud, it
takes about 12 msto send out a 10 character message.
This assumes the host can assemble a message string
instantaneously. Add 5 ms processing time by the
remote card (and 5 ms could be considered a
minimum) before anything is sent out. It could be
nearly 50 ms for a complete exchange. Using a
simple command structure, about 20 message
exchanges per second are possible.

Increasing the baud rate decreases message exchange
time, but there is a point of diminishing return. Going
to 19,200 baud cuts serial communication timein
half. However, message processing time staysthe
same. At some point in time the processng power of
the host and remote units isa major factor. RPC
cards process commands roughly at a rate of 1/ms.

To verify an address and begin carrying out a
command takes about 30 ms. Any additional data
processing increases this time.

The next application in Appendix B uses a modem in
areceive application. Thisillustration uses a generic
1200 baud modem, although a higher speed modem
can be used provided incoming data does not come in
so fast the buffer fills and characters are lost.

COM1 is set as the receive port. The modem
connectsto the RPC card serial port using a VTC-9F
serial cable. Most externd modems havea DB-25F
(female) connector for the serid port, therefore aDB-
9F to DB -25M adapter is necessary. Also, since both
the RPC card and modem are designed to pluginto a
PC, a null modem adapter must be inserted between
the DB-9 connector on the VTC-9F and adapter. The
connectors are shown below:

modem > DB9F to DB 25M > nul |

This can be somew hat of a kludge. A nother way is
to make a custom cable from the RPC card 10 pin
IDC connector to aDB -25M. If you choose this
route, connect the pinsin the following manner:

IDC DB-25 Function on
male RPC card

3 2 Tx output

4 5 RTS input

5 3 RXD input

6 4 CTS output

9 7 Ground

Y our modem may have configuration switches. Set
these switches to the following conditions to use the
sampl e program:

Force DTR lead (pin 20) true to enable modem
to execute commands.

Modem responds to commands with english
word result codes.

Result codes sent to the RPC card.
Echo characterswhile in thecommand state.

Modem automatically answers an incoming
call.

Force CD lead (pin 8) true.

Enable modem com mand recognition.
Y ou may have to set these conditions in software.
There is a certain sequence, or protocol, that is
followed when answering a phone. The steps

(CYCLE) follows:

CYCLE Action

1-10

modem > VTC- 9F

RPBASIC-52 PROGRAMMING GUIDE

0 Wait for "RING" message. Modem

auto answers.
1 Look for "CONNECT".
2 Get password. If invalid, prompt for

password again.
3 Send successful login message.
Prompt for command and process

them.

4 Take modem off line and reset

5 Delay for afew seconds and send sign
on message.

The actual program is more complicated than the
steps indicate. Timeouts are used to disconnect the
modem when there is inactivity. Three failed
passw ord attempts takes the modem off line.
Ringing but no connect takes the modem off line.
Superfluous <cr>'s areignored.

Activity timeout is setfor 10 seconds. The
ONTICK routine checks for activity every second
when the program cycle advances to step 1 and
beyond. ONTICK could be faster if it is necessary.
Keep in mind that ONTICK interrupts have the
highest priority. Keep tick interrupt processing
times short and as infrequent as possible. Frequent
and/or long processing times take away from other
program times.

ON COM $ interrupt uses a program cycle pointer
(variable CYCLE) to direct the next activity on an
interrupt. When a message is received, an interrupt
is generated. Processng the message is handled by
the ap propriate routi ne pointed to by CY CLE. A
<cr><If> sequence is simply ignored and treated as a
non-event.

After the password is accepted, the main purpose of
the application takes over. There are many
scenarios, or situations, possible:

1. Thecomputer isused for datalogging.
Dialing in merely dumps data.

2. The computer is used for control. A dial up
is for new instructions or parameters.

3. Some combination of data logging and
control.

4. A computer will dial up and query and/or
issue new instructions.

5. A person using aterminal will dial up the
control card and query and/or issue new
instructions.

6. A computer and/or person at aterminal will
dial up and query and/or issue new

instructions.
7. A new program is downloaded to the card.

The number of possible applications is much too
complex to even begin showing code.

Some applications use a person at aterminal to
remotely query the card. In thissituation, it is nice
to return a character as soon as it istyped in. This
can be done by setting the users terminal to local
echo. However, you don't know if the card received
what you send. The remote card can echo back
characters as they are sent. To do thisrequires a
program change. ON COM $ must either be disabled
or changed to generate an interrupt on each character
input. If ON COMS$ isdisabled, then the main
program has to be structured so it can process
incoming charactersimm ediately.

If ON COMS$ generates an interrupt on each
character, then the incoming data rate should be
relatively slow (1 character every 50 ms). Notethis
is not the baud rate. The baud rate can still be 9600.
It just should not get characters more than 20
times/second. For hand typing situations, thisis just
fine.

When another computer is talking to the card,
immediate echo may not be necessary. Instead, the
incoming message can be echoed back when a <cr>
isreceived (or when ON COM$ generates an
interrupt). The cycles would merely increase based
on the command. In some ways, it becomes like a
RS-485 network described above. A command is
received, parsed, and processed.

Scenario 7 requires some cautionary notes. It isnot
unusual to download programs through a modem.
There is no difference between a modem down load
and one directly connected to a PC. The Uland UO
commands must be set to 1 when using COM 1 and
before going into the command mode (executing an
END or STOP statement in the program).

A problem arises when communication is lost for
some reason. While the RPC cards have a watch
dog timer, they are not enabled during command
mode (T hisistrue of the RPC-320 and RPC-330.)
When communication is lost, usually all that is
required is to redial the modem, assuming it has
been set to auto answer. If communication is |ost
due to some external force (cell phone or netw ork
failure), the card will just sit there and not run.
When the application is mission critical, an external

1-11

RPBASIC-52 PROGRAMMING GUIDE

watchdog timer may be necessary to restart the card.
Make sure call waiting is disabled.

ON LINE Multitasking

ON LINE is used to detect changesin aline. An
interrupt is generated every time a line goes high or
low. Usethiscommand to detect changes in safety
interlocks, level switches, or process command
switches. Using this multitasking statement saves
code and time because checking is done
automatically in the background. A line must be
high or low for aminimum of 5 msto ensure
detection to another gate. Up to 8 lines can be
monitored at one time.

This command is re-entrant, meaning when a routine
is long enough and change interval short enough the
interrupt is called twice. When thereisthis
potential, the first part of your program should
branch to routines that handle high and low line
conditions. Use the LINE function to return the
current gatus of aline.

ON COUNT can be used to expand the number of
line changes. Simply specify acount of 1. An
interruptis generated whentheline goes low.

Program execution slows down by up to 5% when
all ON COUNT and ON LINE statements are
enabled.

ON COUNT Multitasking

Up to 65,535 pulses can be counted on any one of
eight lines. A line must be both low and high for a
minimum of 5 ms to ensure counting. Maximum
reliable counting rate is 95 Hz.

Counters specified in this statement are software
countersonly. Itisnot related to any hardware
counters on the card.

A number of syntaxes allow simple counting to
interrupt generation when a number of countsis
reached.

The number of counters can be increased by using
ON LINE. Counting rate must be very slow (less
than 10 times/second) to effectively use this method.
A counter increments when alineislow. Usethe
LINE function toread the status of aline.

Program execution slows down by up to 5% when

all ON COUNT and ON LINE statements are
enabled.

Assembly Language Interface

Assembly language programs must be placed in the
RPBASIC-52 EPROM. When using the Basic,
assembly language programs should start at address
6000H or higher,up to 7FFFH.

Normally a32K EPROM is used to store RPBA SIC.
A 64K EPROM may be used provided a
modification is performed. Refer to your hardw are
manual under ASSEMBLY LANGUAGE INTERFACE
for information.

Documented assembly language interface calls listed
inthe Intel MCS BASIC-52 Users Manual will not
work with RPB ASIC-52. Thisis because
RPBASIC-52 has be reassembled and code shifted
around.

Assembly language development environment

An economical way to development assembly
language programs and still keep RPB ASIC-52 isto
use an EPROM emulator. These are available from
several sources.

Parallax Inc (916) 721-8271
JDR Micro Devices (800) 538-5000

Model types frequently changes, so it is best to
contact these companies for the latest information.
Generally, these cards connect to the parallel port on
aPC. Downloading aprogram is generally under 1
second.

The way programs are developed would be to
remove the RPBASIC-52 EPROM and read it by an
EPROM programmer. Save the file.

Install the EPROM emulator into the card. Then,
load in both the RPBASIC-52 binary file and your
assembly language binary file using the softw are
provided by the emulator.

Assembly language routines are accessed using the
Basic CALL command.

Another development method isto use an In-Circuit-
Emulator (ICE). Which type you use depends upon
the processor type and your budget.

1-12

RPBASIC-52 PROGRAMMING GUIDE

OPERATORS

Operator categories include:
Arithmetic =, +,%,/,** SQR
Relational =, <>, <, >, <=, >=
Logical .AND.,.OR.,.XOR.,.NOT.
Value ABS, INT, PI, RND, SGN

Operator Precedence

The precedence of operators determines the order in
which mathematical operations are executed. Basic
scans an expresson from lefttoright and performs
no operations until it encounters an operator of
lower or equal precedence. For instance,
multiplication tak es precedence over additi on.
Parenthetical expressions have the highest
precedence.

The following list isBasic's order of precedence:

Operators in parenthesis
Exponential operators (**)
Negation (-)
Multiplication (*) and division (/)
Addition (+) and Subtraction (-)
Relational expressions(=, <>,<=, <, >=, >)
AND. (logicd AND)
OR. (logicd OR)
XOR. (logicd XOR)

©o NG~ wWN P

Parenthetical expressions have the highest
precedence, so their useis a good way for you to
reduce ambiguity and make your programs more
readable. However, parenthetical expressions use
internal data memory.

ARITHMETIC OPERATORS

Arithmetic operators perform basic arithmetic
functions:

+ addition
- subtraction, not negation
* multiplication
division
** exponential

OBSOLETE and MODIFIED
COMMANDS

A number of commands in the original BASIC-52
have been replaced, obsolete, or no longer
functional. The following isalist of obsolete

commands and are no longer available:

CLEARII

CLOCKO

CLOCK1

FPROG through FPROG6
P

PORT1

PROG through PROG6
RAM

RCAP2

ROM

RROM

TIMERL1

TIMER2

T2CON

XFER

XTAL

The following comm ands have been modified with
respect to name and operation:

Old New
ONEX1 ONITR
ONTIME ONTICK
PGM BSAVE
RROM EXECUTE
TIME TIME

1-13

RPBASIC-52 PROGRAMMING GUIDE

Some com mands have been added to or otherwise
enhanced:

IDLE
INPUT
PWM

The following commands are new to BA SIC-52.
Note that not all commands/functions are available
on all cards.

AIN

BLOAD
BSAVE
CARD$
CLEAR COM
CLEARDISPLAY
CLEAR KEYPAD
CLEARTICK
COM

COM$
COUNT
DATE
DISPLAY
EXECUTE
KEYPAD
LINE

LOAD

ON COM$
ON COUNT
ONITR

ON KEYPAD
ON LINE
ONTICK
PEEK

POKE

SAVE
SPROM

STR

TICK

TIME
WDOG
CONFIG

COMMAND GROUPS

The Command Reference is a detailed description of
each RPBA SIC-52 command, function, and
instruction. Note that not all cards implement all
commands. Also, thislist is accurate as of the date
of printing. New er cards may not make it into this
programming guide.

The following is alist of commands grouped by
function.

Listing and control

LIST
LOAD
NEW
RUN
STOP
SAVE

Multitasking
ON COM$
ONITR
ONTICK

ON LINE
ON COUNT
ON KEYPAD

Program flow and looping
DO-WHILE
DO-UNTIL
END
FOR-TO-NEXT
GOSsuUB

GOTO
ON-GOSUB
ON-GOTO
REM

RETURN

RETI

1-14

RPBASIC-52 PROGRAMMING GUIDE

Data storage and retrieval
BLOAD
BSAVE
CBY

DBY
DATA
DIM
POKE
PEEK
READ
RESTORE
XBY

Operators

>=
ABS
AND
ATN
COS
EXP
INT
LOG
NOT
OR
PI
RND
SGN
SIN
TAN
XOR

The trigonometric operatorsSIN, COS, and TAN
use a Taylor series. Results are caculated to seven
significant digits. The algorithm reduces the
expression to a value between zero and PI/2 and
resultsin alossof precison if input_expr is large.

Relational operators (=, <>, <, etc.) return aresult of
65535 if the relation is true and zero if it'sfalse. The
result may be displayed or used in further
calculations. Beware when comparing cal cul ated
floating-point values as rounding errors may produce
unexpected results.

Logical operators perform bitwise operations on
expressions w hich evaluate to valid positive integers
between OH and OF FFFFH (65535). All non-
integer values are truncated to integers.

Hexadecimal values with aleading alpha character
must be preceded by aleading zero or B asic will
interpret your constant as a variable name. If you
supply fewer than 16 bitsto NOT it will return a 16-
bit value based on the assumption the unsupplied
bits were zeros.

Serial input/output
CONFIG BAUD
COM

COM$

GET

INPUT

ON COM$

ul

uo

Printing and formatting
CR

PRINT, P., ?

PH

SPC

USING

Hardware input/output
AIN

AOT
CARD$
COUNT
DATE
DISPLAY
KEYPAD
LINE

ON COUNT
ONITR

ON KEYPAD
ON LINE
PWM

TIME

Real time controls
EXECUTE

IDLE

TICK

WDOG

1-15

RPBASIC-52 PROGRAMMING GUIDE

String operation

ASC
CHR
STR
STRING

Strings in RPBASIC-52 are one-dimensional arrays
of characters. Strings are stored as a sequence of
ASCII values terminated with aOD H (the ASCI|I
value of a carriage return).

Memory for strings isallocated by the STRING
operator. String variables are $(0) through $(254).
Strings may be any length, limited only by available
memory. However, if you wish to assign a string to
explicit text in quotes, it may be up to

[72-{number of digitsin stringidentifier}]

charactersin length. In other words, $(9) may be 71
characters long, but $(200) may be only 69
characterslong. Thisis due to the BASIC-52
program line length limit of 79 characters. Longer
strings must be assigned one character at atime with
the ASC operator or the X BY instruction. Explicit
text assigned to a string must be enclosed in double
guotation marks. The ASC and CHR operators can
evaluate individual charactersin a string.

Interrupts

ON COM$
ON COUNT
ONITR

ON KEYPAD
ON LINE
ONTICK
RETI

Other operators
IDLE

Memory Allocation
FREE

LEN

MTOP

1-16

RPBASIC-52 PROGRAMMING GUIDE

ABS
Syntax: ABS(expr)

Where: expr = any number in Basic's range
Function: Returns the absolute value of an expression

Mode: Command, run
Use: PRINT ABS(C)
Cards: All
DESCRIPTION

The absolute value of a number is always positive or zero.

2-1

RPBASIC-52 PROGRAMMING GUIDE

AIN
Syntax: AIN(channel)
Where: channel = 0to 7, is channel to convert.
Function: Convertsanalog inputto digital number and returns anumber from 0 to 4095 (0to 1023 for the RPC-

52)
M ode: Command, Run
Use: B = AIN(N)
Cards: RPC-52, RPC-320, RPC-330. RPC-52 rangeis0to 1023 (10 bit).
DESCRIPTION

AIN returns a number corresponding to the input voltage. A number from 0 to 4095 (0 to 1023 for RPC-52)
isreturned. The result isreturned in under 2 ms. Input voltage may be 0-5V or +2.5 volts, single ended or
differential. Inputs are configured for 0-5V, single ended input on power up. Use CONFIG AIN to configure
each channel's characteri stics.

The RPC-52 does not have differential inputs or use CONFIG AIN. Refer to the RPC-52 hardware manual
for more information. The following explaination assumes a 12 bit result (0 to 4095) is returned.

A result is scaled to obtain aresult representing a physical quantity. The general equation is:
variable = K * AIN(n)
where K is a scaling constant and n is the channel number. The scaling constant is determined as follows:
K = (maximum quantity - minimum quantity) / 4096
The physical quantity can be volts, current, pressure, inches, or w hatever measurem ent you are taking.
"maximum quantity" is the number with its output at 5 volts while "minimum quantity" is the number at O

volts. Usually, the minimum quantity is 0.

Suppose you have a 0-200 PSI pressure transducer with a 0-5V output. To compute the constant for one
PSl/count, divide the pressure over the resolution:

K =200/4096
K = 0.04828 = PSI change per count

To measure 0-5 volts, K = 0.001220703

RELATED
CONFIG AIN

ERRORS
BAD ARGUMENT When channel expr> 7 or negative
BAD SYNTAX When channel exprleft out

RPBASIC-52 PROGRAMMING GUIDE

ASC
Syntax: ASC(ASCII character)

ASC(stringposition expr)

Where: ASCII character = number from 0 to 255
string = any valid string variable
position expr = 1 to length of string

Function: Returns or sets the integer value of an ASCII character or the character instring at position expr.
M ode: Command, run

Use:

PRINT ASC(C)
ASC($(3),1)=48H
C = ASC($(0) P)

Cards: All

DESCRIPTION

The ASC operator either sets or retums the value of an ASCII character. Use ASC to evaluate, change or
manipulate individual charactersin a string.

The first syntax returns the value of an ASCII character. |f ASCII character were the letter '‘B', a66 is
returned. Basic converts any lower case variable symbols to upper case. Lower case characters must be put

into a string to be evaluated.

The second syntax, shown under Use, sets a character in a string to a specific value. This is useful when you
want to manipulate individual charactersin a string.

The third syntax retums avalue in string at position expr. Thisform isuseful when you want to evaluate
individud charactersina string, such asgeneraing achecksum.

The STR command, unique to RPBA SIC-52, manipulates entire strings.

RELATED

CHR, STR,STRING

ERROR

SYNTAX Attempt to convert an improper value.

EXAMPLE

The following example prints ASCII values from the string $(0). The first 3 characters are modified at lines
70 to 90. Theresult is then printed.

10 STRING 200, 20

20 $(0)="abc123"

30 FOR N=1 TO 6

40 PRINT ASC($(0), N,
50 NEXT

60 PRI NT

70 FOR N=1 TO 3

80 ASC($(0), N)=65+N
90 NEXT

100 PRI NT $(0)

READY
>RUN

97 98 99 49 50 51
BCD123

RPBASIC-52 PROGRAMMING GUIDE

ATN
Syntax: ATN(expr)
Where: expr = value betw een 0 and P1/2
Function: Returns a trigonometric arc-tangent of expr. Returned result is between -Pl/2 and PI/2 radians.
Mode: Command, run

Use: PRINT 4*ATN(1)
Cards: All
DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate thefunction. These operators first reduce the
argument to a value that isbetween 0 and PI/2. The algorithm used to reduce the value will reduce accuracy
when exprislarge To maintain accuracy, keepthe arguments for trig functions as small as possible.

ERRORS
ARITH.UNDERFLOW expr or result isless than RPBASIC-52's smallest floating-point value of +1E-127
ARITH.OVERFLOW expror result isgreater than RPBASIC-52's largest floating-point value of
+.9999999E+127
DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES
100 PRINT SIN(PI/2), COS(10001*Pl), TAN(5* Pl / 4)
110 PRI NT ATN(TAN(PI/4))/PI

>run

1 -1 1
. 24999996

RPBASIC-52 PROGRAMMING GUIDE

BLOAD
Syntax: BLOAD to RAM segment, RAM address, from EPROM segment, EPROM address, length

Where: to RAM segment = 0to 7, isthe 64K block in RAM to write to
RAM address = 0 to 65,535, is the address to write to
from EPROM segment = 0to 7, isthe 64K block in EPROM to read from
EPROM address = 0 to 65,535, is the address in EPROM to read from
length = 0 to 65,535, is the number of bytes tomove from EPROM to RAM

Function: Transfersa block of binary daafrom flash EPROM to RAM.

Mode: Command, RUN
Use: BLOAD 1,0,5,0,1000
Cards: RPC-320, RPC-330
DESCRIPTION

BLOAD transfers a block of binary information from EPROM to RAM. BLOAD does not check to see if
there is enough RAM memory to save to or if the EPROM is large enough to perform the transfer. Datais
retrieved from RAM using PEEK type functions.

segment can be though of as the X0000H addressof the RAM or EPROM. When a segment of 1 and an
address of 4300H are used, an address equivalent to 14300H is used to access the device. When a 128K
RAM or EPROM isused, segmentisOor 1. A 512K RAM or EPROM can have a segment of 0to 7. A 32K
device only has segment 0.

NOTE: Avoidusing RAM segment 0. Thisiswhere RPBASIC program and variables are used. When
segment 0 must be used, transfer data to above the MTOP address location.

Data transfer rate is about 23.5 ms/1000 bytes. During BLOAD time, ONTICK and ONITR interrupts are
recognized but not serviced. If these commands must be serviced quicker, transfer data in smaller blocks.

BSAVEtrandersdata from RAM to flash EPROM.

RELATED

BSAVE, all PEEK commands

ERROR

BAD ARGUMENT When any parameter above is out of limits.

EXAMPLE

The following example POKEs data into segment 1 of dataRAM. Thedata isthen saved to EPROM
segment 6 and loaded back to a different location in RAM. The datais then verified. A 128K RAM and
512K flash EPROM must be installed for this example to work.

10 RA=512

20 FOR N=0 TO 1000 STEP 2
30 POKE WL, N, N

40 NEXT

50 FOR N=2000 TO 3000 STEP 2
60 POKE WL, N, 0

70 NEXT

80 BSAVES6, RA, 1, 0,1000

90 BLOAD1, 2000, 6, RA, 1002

100 FOR N=0 TO 1000 STEP 2

110 B=PEEKW 1, N+2000)

120 I F B<>N THEN PRI NT "Error address",N," data is",B
130 NEXT

RPBASIC-52 PROGRAMMING GUIDE

BSAVE
Syntax: BSAVE to ROM segment,ROM address,from RAM segment, RAM address, len gth
Where: ROM segment = 0to 7, the 64K byte block to write to
ROM address = 0 to 65535, address to write to
RAM segment = 0to 7, a 64K byte block to read from
RAM address = 0 to 65535, address to read from
length = 0 to 65535, number of bytesto write
Function: Writes raw binary daato flash EPROM from RAM.
Mode: Command, run
Use: BSAVE 1, ROMTO, 1,RAMPTR, 512
Cards: RPC-320, RPC-330
DESCRIPTION
BSA VE writes a block of binary information to EPROM from RAM . Use the POKE com mands to write data
toRAM.

WARNING: BSAVE should be used sparingly. The flash EPROM has a limited number of write cycles

(1000) to each sector.

A length of O writes 65,536 bytes.

Limited parameter checking is performed. Basic assumes RA M exists at the segment and addr ess specified.
Basic checks to make sure the ROM segment specified is within limits of the installed EPROM , but addresses
and lengths are not checked.

WARNING: BSAVE can write over programs saved using the SAVE command.

A segment can be though of as the X0000H addressof the RAM or EPROM. When a segment of 1 and an
address of 4300H are used, the address equivalent to 14300H is used to access the device. When a 128K
RAM or EPROM isused, segmentisOor 1. A 512K RAM or EPROM can have a segment of 0to 7. A 32K
device only has segment 0 anditsaddressis limited to 32767 decimal, or 7FFFH.

A flash EPROM is written to in sectors. A sector is 64, 128, or 512 bytes for the 32K, 128K, or 512K
EPROM respectively. RPBA SIC automatical ly detects the type of EPROM installed when it writes to it.

Y ou must pay attention to thesector size for two reasons. First, asector isthe minimum number of bytes
written. If aprogram requires only 35 bytes to be saved, 512 bytes are written when a512K EPROM is
installed. If the followingis performed

1000 BSAVE 6, 5,1, 1000H, 35

éOOO BSAVE 6, 42, 1, 1025H, 35

several things happen. The data saved by line 1000 is overwritten by the data in line 2000, even though
different write addr esses were specified. This brings usto the second reason sector size is considered.

RPB ASIC forces the requested EPROM address dow n to an even sector address. In both cases above, data is
written to the EPROM starting at address O, notat 5 or 42.

The solution to thissituation isto write data out in even sector size blocks and to write them on sector

boundaries.

A program is not required towrite in full sector sizes. When less than 1 sector is gecified, RPBASIC writes
the next datain RAM until the full sector size is reached. When alarge number of bytes are written, covering

2-6

RPBASIC-52 PROGRAMMING GUIDE

many sectors, the last written sector isfilled in with more datafrom RAM. Note that BL OAD allows data
retrieval of any length and isnot affected by sector size.

The easiest way to determine an even sector addressis to "AND" the EPROM address with either FFCOH,
FF80H, or FEOOH for 32K, 128K or 512K EPROMSs respectively.

Data can be saved "above" programs. The following is away to determine the next free sector for writing to
flash.

1) Save the program. Note the number of bytes saved.

2) Add the sector size (based onflash EPROM type) plus 64 bytes to the number of bytes saved. (64
bytes is for program overhead). For example, suppose the program is 28145 bytes long and a 512K
(29C040) EPROM isinstalled. 28145 + 512 + 64 = 28721

3) At the terminal, print the following:
print 28721 . AND. OFEOOH

the response is
28672

What you have done is told the computer to print the length of the program + 512 bytes (for the sector) +
64 bytes (for program overhead) and 'and' it with FEOOH. Notice the address, 28672, is higher than the
number of bytes saved and less than the number we figured for sector size and overhead.

4) BSA VE can be used starting at this address (28672, or 7000H).
This method will work regardless of the number of programs saved or segment number.

Writing takesabout 35 ms/1000 bytes. During BSAVE time, ONTICK and ONITR interrupts are recognized
but not serviced. If these commands must be serviced quicker, write data in smaller bl ocks.

RELATED
BLOA D, POKE commands

ERRORS
BAD ARGUMENT When any parameter is out of range or EPROM does not work properly.
HARDWARE When verify to EPROM is bad

EXAMPLE

The following example POKEs data into segment 1 of dataRAM. Thedata isthen saved to EPROM
segment 6 and loaded back to a differentlocation in RAM. The dataisthen verified. A 128K RAM and
512K flash EPROM must be installed for this example to work.

10 RA=512

20 FOR N=0 TO 1000 STEP 2

30 POKE WL, N, N

40 NEXT

50 FOR N=2000 TO 3000 STEP 2
60 POKE WL, N, O

70 NEXT

80 BSAVESG, RA, 1, 0,1000

90 BLOAD1, 2000, 6, RA, 1002

100 FOR N=0 TO 1000 STEP 2

110 B=PEEKW 1, N+2000)

120 I F B<>N THEN PRI NT "Error address",N," data is",B
130 NEXT

RPBASIC-52 PROGRAMMING GUIDE

CALL
Syntax: CALL address

Where: address = address of assembly language program from 0 to 65535
Function: Calls an assembly language program in external Program M emory

Mode: Command, Run
Use: CALL 16
Cards: All
DESCRIPTION

CALL instruction invokes an assembly language program. To return to Basic, you must executea RET
instruction in the assembly language program. Original BASIC-52 code to multiply address by two and add
4100H was remov ed.

Expressions and variables are not allowed for address; it must be an explicit number. The assembly language
program must reside in external program memory. RPBA SIC-52 occupies internal program memory
locations 0 through 6 FFFH.

RELATED
none

EXAMPLE
CALL 0 Performs soft power up reset

RPBASIC-52 PROGRAMMING GUIDE

CARDS

Syntax: CARD $(expr)
Where: expr = 0 to 3, is the card reader to scan.

Function: Checks card reader for data. If present, returns the site code and card number. If no datais present,
an error code described below isreturned. All dataisreturned in astring format.

Mode: Run

Use: $(0) = CARD$(N)
Cards: RPC-52, RPC-320, RPC-330
DESCRIPTION

CARDS$ returns either the site code and card number or an error code. The site code and card number is
returned in the following format:

"SSS-NNNNN"
Site codes and card numbers have leading 0's. The'-' character is used as a separator.

There are 4 different kinds of error returns possible. These errors arealwaysin a2 character "-X" format.
X" is a number with the following meanings:

No card number present

Hardware error - both data bits down
Parity error

Timeout error - some data received

A WN PP

A "-1" return is the most common. It indicates no cardwas swiped. A "-3" error indicates the card was
improperly swiped.

This command w as designed to work with Sensor Engi neering Co. (Phone 203 777 7444) model no 31503.
Cards arein a 26 bit format: 2 check sum, 8 ste code, 16 data.

Up to 4 card readers may be connected to the digital port at J3. Ports A and B are used to read and control the
readers. Port C may be used for additional opto or digital /0. Port A must be configured as an input and port
B an output using the CONFIG LINE 100. . . gatement. Port C may be input or output asrequired. The high
current driver, U12, must also be installed. Each card reader is connected to digital port J3 as follows:

Card Number J3 pins
Hold D1 DO LED
0 8 21 19 10
1 6 25 23 4
2 3 22 24 1
3 7 18 20 5

The green LED on the reader may be controlled using theLINE# command. A '0' forces the LED to green
and a'l' forcesit tored. A yellow LED indicates a card has been swiped and the reader is ready to send the
information.

RPBASIC-52 PROGRAMMING GUIDE

NOTE: This command takes approximately 27 msto process. This is because the reader sends a bit of
information every 1 ms. Serial and timing interrupts are processed at the hardware level. However,
commands such as ONTICK and ONITR are delayed until CARDS$ is finished processng the data.

RELATED
CONFIG LINE

ERROR
BAD ARGUMENT When expr > 3 or negative

EXAMPLE
The following example reads the card. CONFIG LINE is performed only once. The error codeisreturnedin
B if no card was swiped.

CONFI G LI NE 100, 12, 0,255,0,0

10 STRI NG 200, 10

100 GOsSUB 1000

110 IF B = 1 THEN 100

120 PRINT "Card nunber: ", $(0)
130 GOTO 100

1000 $(0) = CARD$(0)

1010 I F ASC($(0),1)= 45 THEN 1040REM See if '-'
1020 B=0

1030 RETURN

1040 B = ASC($(0),2)-4BEM Return error nunber
1050 $(0)= ""

1060 RETURN

2-10

RPBASIC-52 PROGRAMMING GUIDE

CBY
Syntax: CBY (expr)

Where: expr = address from 0 to 65535

Function: Readsinternal program code

Mode: Command, run

Use: PRINT CBY (1000H)
Cards: All

DESCRIPTION

The CBY instruction reads data from program memory space in the 8052. expr must evaluate to avalid
integer address of 00H through OFFFFH (65535). Code memory is read-only.

RELATED

DBY, XBY, PEEK, POKE

ERROR

BAD ARGUMENT expr must be avalid integer (0 through 65535).

EXAMPLE

10 FOR N=0 TO 10
20 PRI NT CBY(N),
30 NEXT

>RUN
97 203 255 210 22 50 2 39 110 255 255

2-11

RPBASIC-52 PROGRAMMING GUIDE

CHR
Syntax: CHR(expr)
CHR(stringposition)
Where: expr = number from 0 to 255
string = string variable
position = 1 to length of string
Function: Converts expr to ASCII character or prints string at position

M ode: Command, run

Use: PRINT CHR (65)
PRINT CHR($(0),1)

Cards: All

DESCRIPTION

CHR isadual use operator, similar to ASC. One version converts anumeric expression to an A SCI|
character, allowing a variety of string manipulation operations. The second version uses CHR to print
individual charactersin an A SCII string. expr is adecimal number and truncates numbers from 0 through
65535. There must be no space between CHR and the left parentheses or an ARRAY SIZE error results.
Although expr can be any integer, printable ASCII characters range from 20H through 7EH (32 through 127).

The STR function may be used to manipulate and print longer portions of strings.

RELATED
ASC, STR, STRING

ERRORS
BAD ARGUMENT expr can't be truncated to an integer (0 through 65535)
ARRAY SIZE space between CHR and left parentheses

EXAMPLE

10 STRI NG 200, 20

20 $(1)="1234567890
30 FOR N=64 TO 80
40 PRI NT CHR(N),

50 NEXT

60 PRI NT

70 FOR N=1 TO 9

80 PRI NT CHR($(1),N)
90 NEXT

RUN
@A\BCDEFGHI JKLMNOP
1234567890

2-12

RPBASIC-52 PROGRAMMING GUIDE

CLEAR
CLEARS
Syntax: CLEAR
CLEARS
Function: Sets variables to zero, clears stacks
Mode: Command, run
Use: CLEAR
CLEARS
Cards: All
DESCRIPTION

The CLEA R instruction sets all variables to 0 and resets all Basic stacks. ONERR is cleared. Error trapping
must be redeclared after a CLEAR. CLEAR is generally used to clear all variables. CLEAR does not de-
allocate memory allocated to strings by the ST RIN G instruction. It does clear the contents of the strings.
Data put to the stack by PUSH is cleared. CLEA R also resets any FOR-NEX T loops. A C-STACK error is
returned when a NEXT is performed after a CLEAR. CLEAR also resets any GOSU B return addresses.

Use CLEA R to perform a soft reset of a program. Keep in mind that multi-tasking routines are not cleared or
reset using this command. However, if CLEAR is used aspart of a multi-tasking program (ON COM$, ON
LINE, etc.), aRETURN will cause aC-STACK error.

CLEAR S resets the control stack (C-STA CK) only. This stack is used in loops and subroutines to tell it
where toreturnto. Use thiscommand to branch (GOTO) out of FOR-NEXT, GOSUB-RETURN, DO-
UNTIL type structures. It can be used in emergency stop situations where nesting of loop structures is not
known. Variables are not cleared usng CLEAR S.

RELATED none

EXAMPLE

10 CLEAR TI CK(0)
20 ONTI CK 1, 1000
25 ONERR 500

30 I F TICK(0)<2.5 THEN 30
40 A=TICK(0)/0

50 IF TICK(0) < 3.3 THEN 50
60 CLEAR

70 PRI NT " CLEARED"
80 GOTO 80

500 PRI NT "I N ERROR
510 ONERR 500

520 GOTO 50

1000 PRINT TICK(O), A
1010 A=A+1

1020 RETI

>RUN

CcUubhwWZNR
NRONJIRO

2-13

RPBASIC-52 PROGRAMMING GUIDE

The above example shows that ON TICK continues to run after a CLEA R statement but variables are cl eared.
If a program error were generated after the clear, the program would stop because ONERR w as cleared.

The next example demonstrates how CLEAR S can beused in aFOR-NEXT loop. A C-STACK error is
returned if the CLEAR Sisnot in line 20.

10 FOR N=0 TO 10

20 I'F N=5 THEN CLEAR S : GOTO 10
30 PRI NT N

40 NEXT

2-14

RPBASIC-52 PROGRAMMING GUIDE

CLEAR COM
Syntax: CLEAR COM (port)

Where: port =0or 1, the serial communication port. port may be larger. Check your cards manual.
Function: Clears received charactersin specified serial port buffer.

Mode: Run

Use: CLEAR COM (0)
Cards: All
DESCRIPTION

Received characters in the specified serial portare cleared. Characters in the transmit buffer are not affected.

RELATED
COM, COMS$, GET

ERRORS
BAD SYNTAX Any parameters left out
BAD ARGUMENT When port > 1 or card limit or negative

EXAMPLE
100 CLEAR COM 1)

2-15

RPBASIC-52 PROGRAMMING GUIDE

CLEAR DISPLAY

Syntax: CLEAR DISPLAY Clears character and, if available, graphics displays.
CLEAR DISPLAY LINE Clears character line
CLEAR DISPLAY LINE(x1,y1)-(x2,y2) Clearsgraphicsline
CLEAR DISPLAY P(x,y) Clears a pointon a graphicsscreen
CLEARDISPLAY C Clears characters only on graphics screen
CLEARDISPLAY G Clears graphics only on graphics screen

Function: Clears display as directed by its options

Mode: Command, Run

Use: CLEARDISPLAY Clears entire display and homes cursor
Cards: All

DESCRIPTION

Character displaysmay useonly CLEAR DISPLAY and CLEAR DISPLAY LINE.

Character displays require several milli-secondsto clear. After CLEAR DISPL AY statement, it is best to
execute several other RPBASIC-52 commands before using the DISPLAY command again. Thiswill allow
the display to "catch up" to the program. Failure to do so may result in an incomplete screen clear or missing
characterddata.

NOTE: CLEAR DISPLAY LINE requires several milli-seconds to execute. LCD displays require up to 10
ms while the VF display requires 20 ms. Processing other RPBASIC-52 interrupts are delayed by
this amount of time.

The x and y graphic coordinates are the same as thosespecified in the DISPLAY LINEand DISPLAY P
commands.

RELATED
DISPLAY

ERROR
BAD SYNTAX When wrong option is used with a display.

2-16

RPBASIC-52 PROGRAMMING GUIDE

CLEAR TICK

CLEAR KEYPAD
Syntax: CLEAR TICK (timer)
Where: timer=0t0 3
CLEAR KEYPAD
Function: Resets specified tick timer or clears keypad buffer.
Mode: Command, Run
Use: CLEAR TICK(1)

DIFFERENCES FROM BASIC-52
The TICK function replaced TIME asa process clock. See TICK function for more information. KEY PAD
has no equivalent function in BASIC-52.

DESCRIPTION
There are four independent tick timers that can be cleared independently of each other. This statement resets
any one of the four tick timersto 0.

CLEAR KEYPAD clears the keypad buffer.

RELATED
TICK,KEYPAD

ERRORS
BAD SYNTAX Any parameters left out
BAD ARGUMENT When timer > 3 or negative

2-17

RPBASIC-52 PROGRAMMING GUIDE

COM
Syntax: COM (port)
Where: port =0or 1, the serial communication port. port may be larger. Check your hardware
manual .

Function: Returns the number of characters received in the specified serial port buffer.
Mode: Run

Use: A = COM (0)
Cards: All
DESCRIPTION

Use this function in conjunction with GET and COM $ to determine the number of characters to extract from
the serial buffer. A GET 0 data value can be processed with the knowledge that it is a valid character and not
an indication of an empty buffer.

RELATED
COMS$, GET

ERRORS
BAD SYNTAX Any parameters left out
BAD ARGUMENT When port > 1 or card limit or negative

2-18

RPBASIC-52 PROGRAMMING GUIDE

COMS$
Syntax: $(n) = COM$(port)
Where: port =0or 1, the serial communication port. port may be larger. Check your hardware
manual .
Function: Return either all characters or up to a <CR> in specified serial port.
Mode: Run
Use: $(0) = COM$(0)
Cards: All
DESCRIPTION

Charactersin the specified com munications port buffer are put into the string (on the left side of the =) until
one of three conditions occur: 1) There are no more characters to extract. 2) A <CR> character is
encountered. 3) The maximum number of characters specified in the STRING statement is reached.

This statement is useful when the application cannot risk using an INPUT statement. The INPUT statement
waits until a <CR> isreturned before continuing execution.

Unlike the INPUT statement, the value of all characters, except a<CR> (ASCII ODH) arereturned. All
control charactersand characters with ASCII| values above 128 are returned.

NOTE: COM$ works only when it is assgning another string variable. A BAD SYNTAX error is returned
when it is part of aPRINT, IF-THEN, ASC, or other command or function. Use this function only as
shown in SYNTAX above.

RELATED

GET,INPUT,ON COM$

ERRORS

BAD SYNTAX Any parameters left out
BAD ARGUMENT When port > 1 or card limit or negative

EXAMPLE

The following example prints the number of charactersin the buffer as they are entered. When 10 characters
have been received, the string is printed.

10 STRI NG 100, 20 : CLEAR COM 0)
15 PRI NT "Enter characters."

20 A=COM 0)

30 B=COM 0)

40 | F A=B THEN 30

50 PRI NT "Nunmber of characters in buffer:",B, CR,
55 A=B

60 | F B<10 THEN 30

70 $(0) =COM$(0)

75 PRI NT

80 PRI NT "Received string =", $(0)
100 PRI NT "Characters left in buffer=", COMO0)
110 GOTO 20

When you enter a <CR> before the 10th character, the string to the <CR> isreturned. Note that there are still
some characters left in the buffer. W hen 10 characters are entered without a <CR >, characters are put into
the string until the buffer is emptied or the maximum number of string char acters set by STRING is reached.
To see how this works, change line 60 to IF B<25 THEN 30. The number of characters left in the buffer will
always be 5, unless a <CR> was entered.

2-19

RPBASIC-52 PROGRAMMING GUIDE

CONT

Syntax: CONT

Function: Continue program ex ecution after a ST OP or Command-C
Mode: Command

Use: CONT

Cards: All

DESCRIPTION

CONT resumes program execution following a <Ctrl-C> or STOP instruction. You can display or modify
variables while the program is stopped, but you cannot continue a program that is modified.

RELATED
STOP,GOTO, RUN

ERROR
CAN'T CONTINUE When program was modified.

2-20

RPBASIC-52 PROGRAMMING GUIDE

COS
Syntax: COS(expr)
Where: expr = numeric value up to 200,000
Function: Returns the trigonometric cosine of expr which isin radians.

Mode: Command, run
Use: PRINT COS(PI)
Cards: All
DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate thefunction. These operators first reduce the
argument to a value that isbetween 0 and PI1/2. the algorithm used to reduce the vdue will reduce accuracy
when value islarge To maintain accuracy, keep the arguments for trig functions as small as possible.

ERROR
ARITH.UNDERFLOW value or result isless than RPBASIC-52's smallest floating-point value of +1E-127
ARITH.OVERFLOW value or result isgreater than RPBASIC-52's largest floating-point value of
+.9999999E+127
DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES

10 PRINT SIN(PI/2), COS(10*Pl), TAN(8*PI / 4)
20 PRI NT ATN(PI)

>run

1 1 0
1.2626272

2-21

RPBASIC-52 PROGRAMMING GUIDE

CR

Syntax: PRINT CR,

Function: Used with PRINT. Sends a carriage return without a line feed.
Mode: Command, run

Use: PRINT CR,

Cards: All

DESCRIPTION

Used to update aline on a serial console device. A comma is necessary to prevent the usual line feed from
terminating the PRINT instruction.

RELATED
PRINT

EXAMPLE

100 PRI NT TICK(0), R,
110 GOTO 10

>run
3. 242

The number is continuously printed at the same position.

2-22

RPBASIC-52 PROGRAMMING GUIDE

COUNT (statement)
Syntax: COUNT counter,data
Where: counter=0o0r 1
data = 0to0 16777215
Function: Writes data to specified up/down counter.

M ode: Command, Run
Use: COUNT0,A

Cards: RPC-320, RPC-330
DESCRIPTION

Use this command to write 3 data bytes to the preset register (PR) in the LSI 7166 counter. This command
does not transfer PR to the counter (CNTR). To do this, execute:

LI NEB 6, X, 8
Where: X =1 for counter 0, 3 for counter 1.

NOTE: Thesign of data isignored. It can be apositive or negative number. When negative, data is simply
treated as a positive humber.

Decimal portion of data isignored. For example, if data = 100.99999, 100 is loaded into the counter.
See your hardware manual for more information about using the LS| 7166 chip.
Software counters 4 - 11 cannot be set.

RELATED
COUNT (function)

ERROR
BAD ARGUMENT When counter <> 0 or data out of range.

EXAMPLE

10 COUNT 0, 124735

2-23

RPBASIC-52 PROGRAMMING GUIDE

COUNT (function)
Syntax: A = COUNT (counter)
Where: counter=0-1,0r4-11
Function: Reads a multimode hardware or software counter

M ode: Command, Run
Use: A = COUNT(0)
Cards: RPC-320, RPC-330
DESCRIPTION

RPBASIC-52 recognizes a hardware and software counter. The hardware counter is 24 bitswide from a LSl
7166 chip. (Your board may use adifferent kind. Please check your hardware manual.) The RPC-320 has
one of these and the RPC-330 has two. Additionally, there are 8 software counters on all cards.

counter 0 and 1 retrieve a 24 bit (3 byte) number from the LSI 7166 multimode counter IC. A number from O
to 16777215 isreturned. See your hardware manual for more information about using the LSI 7166 chip.

Eight software counters, set by the ON COUNT command, return a count from 0 to 65535. Software counter
is4to 11. A wftwarecount isincremented when aline goes low.

RELATED
COUNT (gtatement), ON COUNT

ERROR
BAD ARGUMENT When counter is out of range

EXAMPLE
The following example sets up line 3 as a software counter input. A count is printed once a second. A count
isincremented by bringing line 3 low momentarily .

10 ON COUNT4, 3
20 ONTICK 1,1000
30 IDLE

40 GOTO 30

1000 PRI NT COUNT(4)
1010 RETI

ON COU NT can be configuredto generate an interrupt when a specified number of countsis reached. See
COUNT MULTITASKING under MULTITA SKING CON STRU CTS at the beginning of this manual.

2-24

RPBASIC-52 PROGRAMMING GUIDE

DATA
Syntax: DATA expr [,expr,...]
Where: expr = numeric data.
Function: It isanexpressonlig used by READ.
Mode: Run
Use: DATA 23.4,17,32,PI*3
Cards: All
DESCRIPTION

Elements of a DATA staementare ssquentidly retrieved by the READ instruction. Multiple DATA
expressions on a single program line must be separated by commas. There must be no spaces between expr
and the comm as.

See RESTORE for more information and exam ples.

RELATED
READ, RESTORE

2-25

RPBASIC-52 PROGRAMMING GUIDE

DATE (function)
Syntax: A = DATE(n)
Where: n =0t0 3

0 = year (last two digits)

1 =month

2 = day

3 = day of week
Function: Returns the month, day, day of week, or year from the optional real time clock
M ode: Command, Run

Use: A=DATE(2) Returns day of month
Cards: All. Note exceptions for RPC-52.
DESCRIPTION

A DS1216DM must bein the RAM socket. Consult your hardware manual for location. A numerical value
of the month, day, or year isreturned. The program under the TIME function is used to convert numerical
date to a string. Substitute DATE for TIME in the program. STR function 10 also converts a number to a
string.

A HARDWA RE error isreturned if the RTC is missing or bad. Use the ONERR construct to trap a defective
DS1216DM . Hardware error code at address 101H is 50.

Day of week isreturned only on cardsw hich use a D S1216DM clock module. (T his excludes the RPC-52.)

RELATED
DATE (command), TIME

ERRORS
BAD ARGUMENT When »n out of range or negative
HARDWARE RTC module missing or bad
EXAMPLE
100 PRI NT "Time: ",

110 FOR N=0 TO 2
120 PRI NT TI ME(N),
130 NEXT

140 PRINT " Date: ",
150 FOR N=0 TO 3
160 PRI NT DATE(N),
170 NEXT

180 PRINT CR,

190 GOTO 100

run

Ti me: 13 24 12 Date: 94 11 14 3

2-26

RPBASIC-52 PROGRAMMING GUIDE

DATE (statement)
Syntax: DATE year,month,day[,day of week]
Where: year = 0to 99
month = 1to 12
day =110 31
day of week=11t07
Function: Setsthe date to the red time clock

M ode: Command, Run

Use: DATE 96,11,17 Sets date to November 17, 1996
Cards: All

DESCRIPTION

Leap year is automatically set. Testsfor day check limits of 1to 31. It does not check foravalid day in a
month. You could st 2-31-96 as avalid date.

This command must be executed first to turn on the clock module. DATE and TIME functions or the TIM E
command will not work otherwise.

day of week can only be set on cards using aDS1216D M type clock module. (T his excludes the RPC-52.)

RELATED
DATE (function), TIME

ERRORS
BAD ARGUMENT When month, day, or year is out of range.
HARDWARE Clock module missing or bad.

2-27

RPBASIC-52 PROGRAMMING GUIDE

DBY
Syntax: A=DBY (expr)
DBY (expr)=variable
Where: expr =0 to 255
variable = 0 to 255
Function: Read/write internal data memory.

M ode: Command, run
Use: DBY (OFOH) = 45H
A=DBY(100)
Cards: All
DESCRIPTION

The DBY instruction retrieves or assigns a value to the 8052 internal data memory. expr and variable must
both must be between 0 and 255 since there are only 256 internal memory locations and one byte can only be
between 0 and 255.

RPBASIC-52 uses many internal memory locations for its own use. Change internal memory with caution or
Basic may malfunction. Locations 1BH through 21H may be used in any way you wish.

RELATED
CBY, XBY

ERROR
BAD ARGUMENT Invalid expr value, such as DBY (256) or attempt to assign an invalid value to a
DBY (expr), such as DBY (18H)=1000.
EXAMPLE

100 DBY(1EH) =234
110 PRINT DBY (1EH)

>run

234

2-28

RPBASIC-52 PROGRAMMING GUIDE

DIM
Syntax: DIM name(size)[,name(size)...]
Where: name = Any valid variable name
size = 1 to 255 elements
Function: Reserves storage for single-dimension array.

Mode: Command, run

Use: DIM FLOW(200) : REM dimensionsa 200 element array called FLOW
Cards: All

DESCRIPTION

The maximum number of array elementsis 255, accessed as name(0) through name(254). CLEAR, NEW, or
RUN commands de-allocate all array storage. T he default size of undeclared arraysis 10 (i.e. 11 elements).
An array cannot be redimensioned after it has been dimensioned. Memory required for an array is((integer
size+ 1) * 6). Array A(99) requires 600 bytes of memory. Available memory typically limits the size and
number of dimensioned arrays.

RELATED
STRING,CLEAR

ERROR
ARRAY SIZE When size >255

EXAMPLE

10 DI M FLOW 200), LEVEL(200)
20 ONTI CK 1, 1000

30 IF PTR < 200 THEN 30
40 ONTI CK 0, 1000

50 FOR N=0 TO 199

60 PRI NT FLOW N), LEVEL(N)
70 NEXT

80 END

1000 FLOW PTR) =Al N(0)

1010 LEVEL(PTR) =Al N(1)

1020 PTR=PTR+1

1030 RETI

2-29

RPBASIC-52 PROGRAMMING GUIDE

DISPLAY
Syntax: DISPLAY option[,option][,option]
Where: option is one or more of the following
"string" Prints to display
$(n) Prints to display
(row,col[,cursor]) Positions cursor and turns it on or off
data Puts data values to display
CR Prints a carriage return to the display
LINE Puts a lineto a graphics display
P Puts a point to a graphics display

ON [G,C] Enables character, graphic, or both displays
OFF [G,C] Turns off character, graphic, or both displays

Function: Writes information to display.

Mode: Command, Run

Use: DISPLAY (1,2,0FF),28,"Name: ",$(0)
Cards: All

DESCRIPTION

DISPLAY has many options, some of which cannot beused withall displays. Graphics commands (LINE, P,
C, and G) areonly valid with the LCD -5003. An error isreturned when they are used with character only
displays.

Strings and cursor positioning may be placed in any order on the command line with the exception of data.
The following example shows how some optionscan be combined in a program line.

100 DI SPLAY (1,0,0N),"Batch no.: ",$(0),(2 0),"Enter process no.:"

The cursor is positioned at line 1, first position (0) and the cursor isturned on. The string "Batch no.: " is
printed. The string in $(0) is then printed. The cursor is then re-positioned to line 2 (third line down), first
position. The string "E nter process no.:" isthen printed. The cursor is positioned just after the ":' character.

DISPLAY does not format text like PRINT. SPC, TAB, and USING commandsreturn an error. Use STR
function 10 to format numbers.

NOTE: Unlikethe PRINT command and serial ports, DISPLA'Y does not buffer sending datato the displ ay.
Due to displ ay speed limitations, it may take up to 1 msto write 1 character or data point to a screen.
Longstrings or lines may take severa milli-seconds. Time sensitive interrupts, suchas ONTICK,
can be "missed" if printing islong and the tick interval is very short. In these situations, it is best to
break up any DISPL AY command into smaller sizes.

The following paragraphs explain each display option.

"string" is any quoted text used in PRINT statements.

DISPLAY "Hello world"

$(n) isany string array. Variable numbers must be printed from this array. The program in TIME function
shows how to convert a number into a string.

DISPLAY $(0)

2-30

RPBASIC-52 PROGRAMMING GUIDE

(row,col,[,cursor]) positions the cursor and, optionally, turnsit ON or OFF. This option affects the character
cursor position only. Therow and collum alw ays start at 0,0, which is the upper left corner of the screen. If
row or col exceed the displays limits, aBAD ARGUMENT error isreturned. The optional cursoris turned
on or off using ON or OFF.

DISPLAY (1,5)
DISPLAY (2,0,0FF)

data is byte information written to the display. Functionally, itis equivalent to CHR$(n) found in other
Basics. data can be used to control additional features of a display not normally available. For example, the

vacuum florescent display brightness can be dimmed to minimum by executing D ISPL AY 28.

NOTE: data does not update cursor position. The display may act 'unusual’' when printing characters or
strings. The best way to solve this problem is to position the cursor before resuming string displaying.

NOTE: data should not be used with the graphicsdisplay. Character values are offset by 20H. For example,
the ASCII value for 'A'is41H. The software subtracts 20H from this num ber before sending it to the display .

CR simply positions the cursor at the beginning of the current line.
DISPLAY CR
The following options are valid on the LCD5003 display only.
LINE draws aline on a graphics display. Itssyntax is:
DISPLAY LINE (x1,y1)-(x2,y2)
Where: x1,x2 =0 to 159

yl,y2=0to 127

The L INE option is optimized for high speed. However, nearly vertical lines wil | take much longer to draw.
A lineis erased using the CLEAR DISPLAY LINE (x1,y1)-(x2,y2) command.

P puts a single point to a graphics display. Itssyntax is:
DISPLAY P(x.,y)
Where: x =0to 159
y =0to 127
These values are valid for LCD5003 display only.
A lineis erased using the CLEAR DISPLAY P(x,y) command.
ON enables character, graphics, or both displays Three syntaxes possible are:
DISPLAY ON Turns on both character and graphics displays.
DISPLAY ON G Turns on graphic display only.
DISPLAY ON C Turns on character display only.
Power on defaultis both graphics and character digplay ON. Turning on character or graphic does not affect
the other. In other words, you could turn the character display ON and OFF without affecting the graphics

display.

OFF disables character, graphics or both displays. Three syntaxes posshble are:

2-31

RPBASIC-52 PROGRAMMING GUIDE

DISPLAY OFF Turns off both character and graphics displays.
DISPLAY OFF G Turns off graphic diglay only.
DISPLAY OFF C Turns off character display only.

Turning off the character display does not turn off graphics.

Using DISPLA'YY ON/OFF [option] allows you to switch between character and graphics displays. Itis
possible to update both graphics and character screens even if they are off.

RELATED
CONFIG DISPLAY

ERROR
BAD SYNTAX When optionisinvalid

2-32

RPBASIC-52 PROGRAMMING GUIDE

DO-UNTIL
Syntax: DO

{program statements}

UNTIL relational expr

Where: relational expris any logical evaluation such as =, <, >, etc.
Function: Executes a number of program statements a relational expression istrue.
Mode: Run

Use: 100 A=0: DO : A=A+1: PRINT A : UNTIL A=4: PRINT "Done"
Cards: All
DESCRIPTION

This statement dways executes at least once. DO-UNTIL loops may be nested. Thisloop may be exited
without meeting relational expr by executing a CLEAR or CLEAR S statement.

This statement always executes to UNTIL once. When relational expris evaluated and if it is false, program
flow branches back to DO. If true, program resumes at the next statement after UNTIL.

When there are no { program statements} between DO and UNTIL, and {relational expr} is false, the "loop"
will repeat forever, or until a <ctrl-c> is typed at the console.

DO-UNTIL and DO-WH ILE loops can be nested.

RELATED
DO-WHILE, FOR-TO-NEXT-STEP

ERROR
BAD SYNTAX When relational expris omitted

EXAMPLE

The following program staysin a DO-UNTIL loop until aline has changed.

10 ON LINE O, 0, 500

20 DO

30 UNTIL C=1

40 PRI NT "Line 0 changed. 1Is now a",line(0)
50 C=0

60 GOTO 20

500 c=1

510 RETURN

>run

Line 0 changed. Is now a 0
Line 0 changed. |Is now a 1
Line 0 changed. |Is now a O

2-33

RPBASIC-52 PROGRAMMING GUIDE

DO-WHILE
Syntax: DO
{program statements}
WHILE {relational expr}
Function: Executes{ program statements} w hile {relational expr} istrue.

Mode: Run
Use: 100 CLEAR TICK(0) : DO : PRINT TICK(0) : WHILE TICK(0)<10
Cards: All
DESCRIPTION

The { program statements} between DO and WHILE are executed once, regardless of the {relational expr}
result. At WHILE the {relational expr} is evaluated. Iftrue, all { program statements} are executed again,
and the test is repeated. If fdse, execution continues at the program statement after WHILE. DO-WHILE
and DO-UNT L loops can be nested.

RELATED
DO-UNTIL, FOR-TO-STEP-NEXT

EXAMPLE

The following program staysin a DO-UNTIL loop until aline has changed.

10 ON LI NE O, 0, 500

20 DO

30 WHI LE C=0

40 PRI NT "Line 0 changed. 1Is now a",line(0)
50 C=0

60 GOTO 20

500 c=1

510 RETURN

>run

Line 0 changed. Is now a 0
Line 0 changed. Is now a 1
Line 0 changed. |Is now a O

2-34

RPBASIC-52 PROGRAMMING GUIDE

END

Syntax: END

Function: Terminates program execution and returns to command mode.
Mode: Run

Use: 65000 END

Cards: All

DESCRIPTION

The EN D instruction terminates Basic program ex ecution. If no END instruction is used at the end of a
program, the last ingruction automatically terminatesthe program. Use END after the body of your program
and prior to any subroutines.

Without an EN D after the main body of your B asic program and prior to any subroutine program lines,
RPBASIC-52 will attempt to execute any subroutines at the end of your program as if they were a
continuation of the main program. Thiswill generate a C-STACK error whenever aRETURN is
encountered.

RELATED
CONT, STOP, GOSUB, ON-GOSUB

ERROR
CAN'T CONTINUE The CONT instruction cannot follow an END instruction.

EXAMPLE
10 GOsuB 100
20 END

100 PRI NT PI
110 RETURN

>run

3. 1415926

If you remove line 20, a C-Stack error is returned.

2-35

RPBASIC-52 PROGRAMMING GUIDE

EXECUTE
Syntax: EXECUTE [segment]

Where: segment = program to execute
Function: Loads and runs program specified by segment.

Mode: COMMAND, RUN
Use: EXECUTEn
Cards: RPC-320, RPC-330
DESCRIPTION

Command gets a program from the flash EPROM and ex ecutesit. segment species the program to execute.
The program saved by the SAVE n command is executed. The range of segment depends upon the flash
EPROM size. Seethe SAVE command for more information.

The effect of EXECUTE isthe same astyping LOAD n, then RUN. The differenceis EXECUTE is part of a
program.

NOTE: Every time EXECUTE isrun, all variables and strings are reset. Variables and strings CANNOT be
passed from one program to another except through peeking and poking to RAM. ONTICK and
ONITR interruptsarecleared asis ONERR.

String and numeric daa can be saved for use by other programs using any of the POKE and PEEK
statements. Data can be POKEd in to space above MT OP (7EOOH in a 32K RAM system) or into memory
segment 1 (128K RAM) or 1-7 (512K RAM).

Some parameters are not cleared by running EXECUTE. These are the tick timers (TICK), serial
communication buffers, and data saved by POKEing. No hardware conditions are reset. No parameters set
by any CONFIG statement are reset.

Loading and executing time depend upon program length. 0.22 secondsis required for clearing variables and
resetting Basic. Add to this time the actual transfer time. Transfer timeisat a rate of 50,000 bytes/second.
A 20K program requires about 0.4 seconds to beginrunning after the EXECU TE statement is finished.

RELATED
LOAD, SAVE

ERROR
BAD ARGUM ENT when segment is out of range.

EXAMPLE
Thefirst lineswere saved to program segment 0. The second set to 1.

10 PRI NT " Program nunmber 0"
20 EXECUTE 1

>save 0

10 PRI NT " Program nunber 1"
20 EXECUTE 0

>save 1

>run

Program nunmber O
Program number 1
Program nunmber 0

2-36

RPBASIC-52 PROGRAMMING GUIDE

EXP

Syntax: EXP(expr)

Function: Raises "e" (2.71828) to the pow er of expr
Mode: Command, run

Use: PRINT EXP(COS(1))

Cards: All

DESCRIPTION

This function returns the result of the number ¢ (2.718282) raised to the power given by expr. This functionis
very computation time intensive. Small values of expr take about 5 milli-seconds to calculate while larger
ones (near 250) require nearly 0.2 seconds. Avoid using this function in tight control or time intensive
applications.

ERROR
BAD ARGUMENT When result of expr > 256

2-37

RPBASIC-52 PROGRAMMING GUIDE

FOR-TO-STEP-NEXT
Syntax: FOR variable=initial index expr TO index limit expr [STEP step expr]

program statem ents
NEXT [variable]
Where: variable = any valid variable symbol
initial index expr = starting value assigned to variable
index limit expr = ending value of variable
step expr = optional increment or decrement to variable when repeating a loop

Function: Looping structure useful for executing a sequence of instructions a number of times.

M ode: Run, command

Use: FOR A=01t0 4000 STEP 200 : AOT 0,A : NEXT
Cards: All

DESCRIPTION

The FOR-TO-STEP-NEX T instruction is aloop structure common to many high level languages. It is used to
perform program statem ents a number of times.

variable is aloop counter initialized to initial index expr at the start of the loop. A number of program
statements are executed until NEX T is encountered. At this point the value of step expris added to the value
of variable. The resulting new variable value is compared to the value of index limit expr. |If the new value
of variable valueis less than or equal to the value of index limit expr, all program statem ents are executed
again, and the test is repeated.

program statements are always executed at |east once. If step exprislarger thanindex limit expr, the loop
executes only once.

STEP isoptional. When omitted, it defaultsto 1. The value of step expr may be positiveor negative.
FOR-NEXT |l oops may beinside other FOR-NEXT loops. variable following NEXT is optional.

There are tw o ways to break out of afor next loop and still maintain the control stack. Thefirst isto execute
aCLEAR S command. This command also clears any subroutine retum locations and DO-WHILE, DO-
UNTIL loops. Another isto set variable to a high value within program statements. When a program
continuously breaks out of a FOR-NEXT loop and re-declares a new loop, a C-Stack error is eventually
returned.

RELATED

DO-UNTIL,DO-WHILE

ERROR

C-STACK NEXT withouta corresponding FOR. This error can also appearif anumber of FOR-NEXT
loops were set up but were illegally branched out of or re-declared.

2-38

RPBASIC-52 PROGRAMMING GUIDE

EXAMPLE
The following example gets characters from the receive buffer and generates a checksum. A string of 10
charactersis entered at com port 0.

10 STRI NG 200, 20
20 PRI NT "Type in 10 characters. Characters are not echoed"
30 IF COM0) < 10 THEN 30

40 $(0) = cont(0)
50 CKSUM = 0

60 FOR N =1 to STR(O, $(0))

70 CKSUM = CKSUM + ASC($(0), N)

80 NEXT

90 PRI NT " Checksum of incom ng string:", CKSUM
>run

Type in 10 characters. Characters are not echoed
(1234567890 are entered at the keyboard)
Checksum of incom ng string: 525

2-39

RPBASIC-52 PROGRAMMING GUIDE

FREE

Syntax: FREE

Function: Returnsthebytes of available in program RAM
Mode: Command, run

Use: PRINT FREE

Cards: All

DESCRIPTION

FREE returns how many bytes of RAM are available to the program and Basic variables. It does not return
the amount of expanded RAM in 128K or 512K RAM systems. The amount of free memory is determined by
the following formula:

FREE = MTOP - LEN - system memory

"system memory" on cards with two serial portsis 1791. Add 512 bytes for any additional serial portson a
card.

RELATED
LEN

ERROR
BAD SYNTAX Attempt to assign avdue to FREE

2-40

RPBASIC-52 PROGRAMMING GUIDE

FREQ (Function)
Syntax: FREQ(channel)

Where: channel = 0 or 1, depending upon card.
Function: Returns a counter value

Mode: Command, run

Use: PRINT FREQ(O0)

Cards: RPC-210, RPC-320, RPC-330 (RPC-210 and -320 are channel 0 only)
DESCRIPTION

This command returns a frequency, or number of pulsesover a period of time. FREQ returns the latest value
from the hardware counter. FREQ does not actually read from the counter. The operating sysem reads the
counter at set intervals defined by CONFIG FREQ and stores them for retrieval by this function. This
function is used to read analog input modules made by Greyhill, Dutec, and others. Equivalent 15+ bit analog
input readings are theoretically possible.

FREQ functionreturns 0 until set upby CONFIG FREQ.

The latest FREQ value remainsin memory until updated by the RPB ASIC-52 operating system. The update
interval is determined by the CONFIG FREQ com mand.

Avoid using COUNT (n) when using this command. It is possible values retumed by COUN T(n) could be
wrong.

Hardware counters(LSI 7166) are used to count pulses. CONFIG FRE Q defines the time interval between
readings. The operating system reads and resets the countersevery time interval. Thus you can measure a
frequency in 1/10 second. The result is multiplied by 10 to obtain the "true” frequency. Errorsin this case
are also multiplied by 10. The best ruleis to set the time interval in CONFIG FREQ for as long of a period as
possible (up to 1.275 seconds) to get the most stable and accurate readings. Shorter intervals make counts
appear lessstable.

Best resolution is below 80 Khz at a measurement interval of 1/2 second. Between 80 Khz and about 190
Khz counts can easily vary by +2. From 190 Khz to about 1 Mhz, counts vary by up to £+10. Above 1 Mhz,
counts vary much more. Counting to 20 Mhz is possible.

You will have to play with the measurement interval, based on the input frequency and desired stability.
Averaging the counts helps stabilize the readings.

There are several sources of errors and instability. The time interval between counter readings isbased on the
system tick timer, which is based on the crystal. Accuracy isusually better than 0.01%. The error isvery
noticeable at higher (> 200Khz) frequencies. Another potential source of erroris the program or functions
you may be executing. Some functions, such as AIN, tumn off all interrupts for a "short" period of time (50
micro-seconds). What this meansis, if it istime for the operating system to read the counters, the reading
will be ddayed by up to 50 micro-seconds. If the frequency isvery high, additional counts are read. No
counts are missed, so averaging readings helps to reduce errors.

Counts are missed when the frequency is above 1 Mhz (500 Khz on the RPC-210). This isbhecause of CPU
processing time between latching and reseting the counter (about 1 - 2 micro-seconds). Increasing the time

interval betweenreadingshelps to reduce errors but doesnot eliminate them.

RELATED
CONFIG FREQ

ERROR

2-41

RPBASIC-52 PROGRAMMING GUIDE

BAD DATA When channel is out of range for a card.
EXAMPLE

The following exam ple sets up frequency multitasking and prints the counts received in a time interval.

10 LINEB 6, 1, 32

20 LINEB 6,1,72 : REM Reset counter and enable inputs

30 CONFI G FREQ 0, 200 : REM Get count every second (5 ns * 200)

40 C = 5/56000 : REM Constant using Greyhill module. 5V / 56000Hz = V/ Hz
50 CLEAR TI CK(0)

60 IF TICK(O) < 1 THEN 40 : REM Wait for a second

70 A = FREQ(0) : REM Get frequency

80 V = (A-14400) * C: REM Multiply by constant to get Voltage

90 PRINT "Voltage = ",V, "Frequency =", A

100 GOTO 50

Y ou may need to add a 1K ohm pull up resistor from the output of the Greyhill module to the input of the
counter. Theinput rise time should be 1 micro-second or faster.

2-42

RPBASIC-52 PROGRAMMING GUIDE

GET

Syntax: A =GET

Function: Gets character from buffer.
Mode: Run

Use: A =GET

Cards: All

DESCRIPTION

GET issimilar toINKEY $ in other Basic languages. GET retums the ASCI| value of the character rather
than the string. This feature makes it useful when receiving binary information.

Toreceive a control-C value (3), set bit 1, address 26H.
DBY(38) =DBY(38) .0R. 1
This disables program breaks when a <Ctrl-C> is received.

GET can extract characters from COM 0 or COM 1. The Ul Oor Ul 1 command is executed to get characters
from an alternate serial port.

The ASCII value O isavalid number. Unfortunately, this value can indicate that there are no characters
available. If your application program expects to receive ASCII 0's, the following program will wait until if
there are characters in the buffer to ensure a value of 0 isindeed valid.

100 IF COM0) = 0 THEN 100
110 A = CGET

Line 100 loops until there is a character in the buffer. Line 110 extracts the character from the buffer. When
A =0, zero isthe ASCII value.

RELATED

COM, COMS$, INPUT, UI 1,UI 0

EXAMPLE

The following program takes characters one at atime from the buffer and putsthem into expanded memory.
128K or more of RAM is needed.

100 IF COM0) = 0 THEN 100
110 A=GET

120 POKEB 1, X, A

130 X=X+1

140 GOTO 100

2-43

RPBASIC-52 PROGRAMMING GUIDE

GOSUB
Syntax: GOSUB line number

line number program statements
RETURN

Function: Transfers program control to the specified /ine number. The RETURN causes execution to resume at
the program statement after GOSUB.

Mode: Run

Use: 100 FOR A=11t0 20 :GOSUB 200: NEXT A :END
200 PRINT A, SQR(A): RETURN

Cards: All

DESCRIPTION

GOSUB provides subroutine capability within RPBASIC-52 programs. A subroutine may be called from
within another subroutine.

GOSUB saves the location of the program statement after GOSU B on the C-Stack and im mediately transfers
program control to line number. When a RETURN is encountered, program execution resumes at program
statement after GOSUB.

GOSUB s can be nested. The number nesting is limited by available C-Stack RAM, but is usually enough for
at least 30 routines.

RELATED
GOTO, ON-GOTO, ON-GOSUB

ERROR
C-STACK An unexpected RETURN is encountered or the number of subroutines executed was excessive.

EXAMPLE

10 GOSUB 100

20 PRI NT "Back from routine"
30 END

100 PRI NT "I n subroutine"
110 RETURN

>run

I'n subroutine
Back from routine

2-44

RPBASIC-52 PROGRAMMING GUIDE

GOTO

Syntax: GOTO line number

Function: Routes program execution to line number
Mode: Command, run

Use: GOTO 100

Cards: All

DESCRIPTION

When line number is the line number of an executable statement, that statement and those following are
executed. GOTO can be used in the command mode to re-enter a program at a desired point.

RELATED
GOSUB, ON-GOTO, ON-GOSUB, RUN

ERROR
INVALID LINE NUMBER Specified line number does not exist.
EXAMPLE

100 PRI NT "At |ine 100"
200 GOTO 100

2-45

RPBASIC-52 PROGRAMMING GUIDE

IDLE
Syntax: IDLE [option]

Where: option specifies a card dependent mode.
Function: Suspends program ex ecution and w aits for an interrupt.

Mode: RUN

Use: IDLE

Cards: All. Variations are card dependent.
DESCRIPTION

Different cards have a variety of parameters. Refer to your hardware manual for more information.

Use thiscommand to suspend program execution and wait for aninterrupt. An interrupt is from an ONTICK,
ONITR, ON COUNT, ON COM$, ON LINE, or ON KEY PA D command.

RELATED none

ERRORS none

EXAMPLE
10 ONI TR 0, 1000
Other initialization
.200 | DLE Wait for interrupt
. On exit from idle, continue program
iooo RETI Simply exit

2-46

RPBASIC-52 PROGRAMMING GUIDE

IF THEN ELSE
Syntax: IF expr [THEN] statement(s) [EL SE statement(s)]

Where: expr = any logical evaluation or variable
statement(s) = any number of Basic statements

Function: When expr is TRUE (not zero), the instruction following THEN is executed, otherwise the

instruction following EL SE is executed.

Mode: Run
Use: 10 IF A<>B THEN PRINT "A=B" ELSE PRINT "A<>B"
Cards: All
DESCRIPTION

THEN isimplied by IF. You may omit THEN. ELSE isoptional. Itisincluded when an "either - or"
situation isencountered.

In the case of multiple statements per line following an IF-THEN-EL SE, Basic executes the following
statements only if expr was true. This enables you to conditionally execute multiple statements with asingle
expr test. Remember this appliesonly to Badc statements separated by the {:} delimiter and on the same
program line.

expr can be either alogical evaluation (=, <, >, <>, AND., .OR., .XOR., or .NOT.) or avariable. Using a
simple variable as a flag can speed up program execution. The following examples illustrate different
execution speeds.

10 A = 1000

20 CLEAR TI CK(0)

30 |F A<>0 THEN A=A-1 : GOTO 30
40 PRI NT TI CK(0)

The abov e program takes about 1 second to execute, which translates to about 1 ms/ line for this example. If
line 30 were re-written as:

30 IF A THEN A=A-1 : GOTO 30

Execution time is reduced by about 20% by taking away the "<>0" evaluation.

RELATED none

ERRORS none

EXAMPLE

10 A=1
20 IF A=0 THEN PRINT "A is 0" ELSE PRINT "A is non-zero"

>run

I's non-zero

2-47

RPBASIC-52 PROGRAMMING GUIDE

INPUT
Syntax: INPUT ["prompt text"] [,] [,variable...]
Where: prompt text = optional text
variable = list of variables to assign
Function: Program pauses to receive data entered from the console input.

Mode: Run

Use: 100 INPUT "Enter batch number",$(0)
Cards: All

DESCRIPTION

INPUT bringsin numeric and string data from the console serial port during execution. Variablesare string,
numeric, or both. Variables are separated by a comma. Optional prompt text must be enclosed i n quotes.

When an optional com ma precedes the first variable, the question mark prompt character issuppressed and
data entry is on the same line as prompt text.

Multiple numeric data may be entered by separating individual values with commas and using <cr> on the
last one. Or, each dataentry may be entered using a<cr>.

Strings must be entered with a carriage return.

If you do not enter enough data or the correct type, Basic sends the message TRY AGAIN and prompt text
after which you must enter all thedata. If you enter too many characters for the size of allocated STRING
memory, or more numeric values than were requested, Basic discards the extra data, emits the message
EXTRA IGNORED, and continues execution.

There are tw o major differences between RPB ASIC-52 and BA SIC-52 while using INPUT. Input characters
are buffered. The operator or device may "type ahead" into the buffer and INPUT will respond just that much
quicker. The back- space character (A SCII value 08) isrecognized in the same way as the delete key was.
This makes editing programs more convenient.

RELATED
COMS, GET,STRING

ERRORS none

EXAMPLE
10 STRI NG 200, 20
20 I NPUT "Enter a nunber, string, and 2 nmore nunbers: ", A $(0),B,C
30 PRINT "String:", $(0)
40 PRI NT "Nunbers:",A B, C
>run

Enter a number, string, and 2 nore nunbers: 4, Bob
?7,9

String: Bob

4 7 9

2-48

RPBASIC-52 PROGRAMMING GUIDE

INT

Syntax: INT (expr)

Function: Returns an integer portion of expr
Mode: Command, run

Use: PRINT INT(PI)

Cards: All

DESCRIPTION

The integer portion is stored as a floating point number.
RELATED none
ERRORS none

EXAMPLE
print int(45.67)
45

print int(-16.9999)
-16

To produce true rounding to the closes whole number, use the following formula:

A = | NT(B+0. 5)

2-49

RPBASIC-52 PROGRAMMING GUIDE

KEYPAD
Syntax: A = KEYPAD (function)
Where: function=0or 1
0 = return keypad position pressed from buffer
1 = returnsnumber of keys in buffer
Function: Returns key pad pressed position or number of keysin keypad buffer.

M ode: Command, Run

Use: A = KEY PAD(0) Returns a keypad position
Cards: All

DESCRIPTION

The keypad is automatically scanned, debounced, and placedin an 8 position buffer in the background. Key
presses are buffered until retrieved by the KEYPAD(0) function. Keypad positions are returned as a number
from 1to 24. When a0 isreturned, there are no more keys in the buffer.

Position numbers 1 - 4 corregpond to the top row while positions 12 - 16 are the bottom row of keys on the
KP-1 and KP-3 keypads. Thus, the letter 'B' on the KP-1 corresponds to position 8.

Use CL EAR KEY PAD to remove all characters from the buffer.
ON KEYPAD branches to a subroutine when a key is pressed. (check cardfor availability)

RELATED
CLEAR KEYPAD, ON KEYPAD

ERROR
BAD DATA When function is out of range.

EXAMPLE
The following program prints out the keypad position as a key is pressed.

10 CLEAR KEYPAD

20 DO

30 UNTIL KEYPAD(1l) =1
40 PRI NT KEYPAD(0)

50 GOTO 20

2-50

RPBASIC-52 PROGRAMMING GUIDE

LD@
Syntax: LD @ expr

Where: expr = valid integer addressof 00H through OFFFFH (65535)
Function: Retrievesa floating-point number previoudy saved with ST@

Mode: Command, run
Use: LD@ 3000
Cards: All
DESCRIPTION

LD@ isused in conjunction with PUSH, POP, and ST@ . Use these commands to save and retrieve floating
point numbers to program RAM.

NOTE: LD@ and ST@ cannot use extended RA M. Only segment 0 RAM (used for running Basic
programs) is used. Use PEEKF and POKEF commands to access this memory.

WARNING: When 128K and 512K RAM are installed, all of memory is cleared on pow er up and reset.
Do not use LD@ or ST @ to save floating point numbers in segment 0. Use POKE and
PEEK type commands instead.

32K RAM sy stems hav e address 7EO0H set as M TOP. Thislocation up to 7FFFH may be used to store
variables.

expristhe addressin RAM of where a number is stored.

Each floating-point number requires si x bytes of memory. exprinthe ST@ and LD@ instructionsspecify the
high address. A number is stored at locations expr through expr-6.

RELATED
ST@, PUSH, POP, PEEKF POKEF

ERROR

BAD ARGUM ENT when expr > 65535
EXAMPLE

100 A=Al N(0) *. 234

110 PUSH A
120 ST@FOOH

300 LD@FOOH

310 POP B

320 PRI NT " Anal og val ue retrieved=",B
>run

Anal og val ue retrieved=",B

2-51

RPBASIC-52 PROGRAMMING GUIDE

LEN

Syntax: LEN

Function: Returnslength of the current program in RAM
Mode: Command

Use: PRINT LEN

Cards: All

DESCRIPTION

The LEN function tells you the length of the program in RAM. LEN returns a value of 1 when no program is
in RAM memory (1 isthe length of the end-of-program marker).

RELATED
FREE

ERROR BAD SYNTAX Attempt toassign avadueto LEN

2-52

RPBASIC-52 PROGRAMMING GUIDE

LINE (Function)
Syntax: A = LINE(line)

Where: line = 0-9 or 100 to 123 (L ineranges may vary. Check your hardw are manual.)
Function: Returns status of aline at on-card lines L 0-7 or interrupt port.

M ode: Command,Run

Use: A = LINE(2) Reads line 2.

Cards: Basic function available on all cards. Ranges vary from card to card. See hardware manual.
DESCRIPTION

LINE returnsaOoral. A 'O correspondsto alow whilea'l'is ahigh. LINE returns the status of an external
opto rack line or on card lines 0-7. line number corresponds to a position on an external opto rack. For on
card lines, therange is0to 9. For an off card rack connected to the digital 1/0 port, it is numbered 100 to
123. 100issimply added to the opto position number to specify a position.

When using LINE to return the status of an opto output line, a 0' means the module is ON while a1’
indicatesit is OFF. Thisisin contrast to the LINE statement whichturns on a module with a'l. When
reading an opto input module, a'0" indicates there is no voltage applied to the inputs.

LINE returns truelogic forLO-L7. A "0" isalogic low whilea"1" isalogic high. Line 8 retums the status
of INTO and/or ISOA/B input. Line 9 returns the status of INT 1.

LINE(n) and LINE#(n) may be used interchangeably in aprogram. For example, you may have an external 8
position opto rack and use some of the non opto digital lines for switch inputs.

RELATED
LINE#,LINEB functions, LINE, LINE#, LINEB staements, CONFIG LINE

ERRORS

BAD SYNTAX When '(* or ') are missing

BAD DATA When line is out of range for a port.
EXAMPLE

The following example show how LINE and LINE# may be used

10 CONFI G LI NE 100, 12,0, 0,1 Configure /O port

20 PRI NT LI NE(104) Read external opto rack position 4

30 PRI NT LI NE#(119) Read digital 1/0 port line 19 (Port A.0)

40 LINE 100, 1 Turns on opto module at external rack position 0
50 LI NE#110, 1 Turns on high current output at I/O port line 10.

2-53

RPBASIC-52 PROGRAMMING GUIDE

LINE# (Function)

Syntax: A = LINE#(line)
Where: line = connector number from 101 to 125 (Line ranges may vary. Check your hardw are
manual.)
Function: Returns status of aline at the digital 1/0 connector.
Mode: Command,Run
Use: A = LINE#(103) Reads level from digital 1/O port connector number 3.
Card: Function available on all cards. Ranges will vary from card to card. See hardw are manual.
DESCRIPTION

The '#' modifier to L INE specifies the actual line number at the digital 1/0O port connector. /ine must range
from 101 to 125 or else aBAD ARGUM ENT isreturned. Line 102 is also not valid. LINE# cannot be used
for the on card opto rack (0 - 3). Theline number is com puted by simply adding 100 to the connector pin
num ber.

LINE# returnsa 0" or a'1', which correspond directly to thelogic level atthe connector. When using LINE#
to return the status of an opto output line, a'0' means the moduleis ON whilea'l' indicatesit is OFF. Thisis
in contrast to the LIN E statement which turns on amodule with a '1'. When reading an opto input module, a
‘0" indicates there is no voltage applied to the inputs.
The following example returns the status at digital 1/0 connector J3, pin 19 (82C55 port A, bit 0);

A = LINE#(119)

See LINE function for more program examples.

RELATED
LINE,LINEB functions, LINE, LINE#, LINEB staements, CONFIG LINE

ERRORS
BAD SYNTAX When # is used for on card positions.
BAD DATA When line is out of range for a port.

2-54

RPBASIC-52 PROGRAMMING GUIDE

LINEB (Function)
Syntax: A = LINEB((i/o bank,address)
Where: i/o bank = 0to 7. Specific functions are card dependent. Refer to your hardw are manual.
address = device dependent. Usually itis 0 to 3.
Function: Reads a byte from an 1/O device.

M ode: Command, Run

Use: A = LINEB (3,0) Readsport A of 8255 at digital port.
Cards: All. i/o bankis unique to each card.

DESCRIPTION

Thisfunction is equivaent toINP in other BASICs. Dataisread 8 bits a atime in contrast to other LINE
functionswhich return 1 bit atatime. Thei/o bank selects a particular I/O device listed in your hardware
manual .

Use this command to read devices and obtain data not otherwise available using RPBASIC-52.

RELATED
LINE, LINE# (function), LINE, LINE#, LINEB (statement), CONFIG LINE

ERROR
BAD ARGUMENT i/o bank> 7

EXAMPLE
The following examplereads all 8 lines at port A on the digital 1/0 port.

100 A = LINEB (3,0)

2-55

RPBASIC-52 PROGRAMMING GUIDE

LINE (Statement)

Syntax: LINE line,data
Where: line =010 8 or 100 to 123 (L ineranges may vary. Check your hardw are manual.)
data = 0,1, ON, or OFF. See text below.

Function: Turns aexternal opto module or lines LO-L 8 on or off.

M ode: Command, Run

Use: LINEO,1

Cards: Basi c statement available for all cards. /ine ranges are card dependent. See hardware manual.
DESCRIPTION

LINE is used to control an external output opto module or on card lines 0-8. On board opto positions are
numbered 0-3. Off card opto racks using the digital I/O port are numbered 100to 123. 100 is simply added
to the opto position to identify the external rack. For example,

LINE 105,0
turns external opto rack position humber 5 off.
data i1s ON, OFF, 0, or 1. ON isequivalent to 1 while OFF is0. A '0' value turns off a module while a'1'
turnsiton. These values arein contrast to the LINE# statement, which has the opposite meaning. For lines
0-7,"ON" setsalinetoalwhile"OFF" setsitto 0.
LINE 8,0 turns off the high current port. LINE 8,1 turnsit on.
Using ON or OFF instead of numbers or variables speeds up thisstatement by 20%.

LINE and LINE # may be used interchangeably in a program.

RELATED
LINE,LINE# LINEB (function), LINE#, LINEB (statement), CONFIG LINE

ERROR
BAD ARGUMENT When lineis out of range

EXAMPLE
The following example shows how different datais returned.

10 LINE 118, OFarns off external opto module 18.

20 LINE #118,0 Setsdigital 1/O connector line 18 to 0.
30 PRINT LINE(118), LI NE#(118)

run
1 0
The function LINE(118) returns a 1 because that is the necessary condition to turn off a module. Also notice

that LINE(118) returns the satus at opto port position 18 while LINE#(118) returmns the condition at the
digital I/O port connector pin 18.

Use the CONFIG LINE statement to configure linesas inputsand outputs. Refer tothe Digital I/O lines
section in the manual and CONFIG LINE statement for more information.

2-56

RPBASIC-52 PROGRAMMING GUIDE

LINE# (Statement)
Syntax: LINE# line data
Where: line = 101 to 125, is the digital 1/O line connector number. (Line ranges may vary. Check
your hardware manual.)
data = ON, OFF, 0, or 1. See text below.
Function: Setsa specified line atthedigita 1/0 connector highor low.

Mode: Command, Run

Use: LINE #102,0

Card: Basic command available for all cards. /ine ranges are card dependent. Refer to hardware manual.
DESCRIPTION

LINE # addresses the digital 1/0 connector pins. line must be between 101 and 125. Line 102 is not valid (it
isthe +5V supply).

data is either ON, OFF, O or 1. ON isthesameasal while OFFisa0. '0' setsthelinelow whilea'l' setsit
high. Thisisthe opposite of the LIN E command. Opto modulesrequire alow, or '0' level to turnon. LINE
inverts data while LINE # does not. Using ON and OFF speeds up statement execution by about 20%.

LINE and LINE # may be used interchangeably in a program.

RELATED
LINE, LINEB (function), LINE, LINEB (statement), CONFIG LINE

ERRORS
BAD ARGUMENT When lineis out of range
BAD SYNTAX When # is used for on card opto rack

EXAMPLE
The following example shows how different datais returned.

10 LINE 118, OFF Turns off external opto module 18.

20 LINE #118,0 Setsdigital 1/0 connector line 18 to 0.
30 PRINT LINE(118), LI NE#(118)

run

1 0

The function LINE(118) returns a 1 because that is the condition to turn off a module.

2-57

RPBASIC-52 PROGRAMMING GUIDE

LINEB (Statement)
Syntax: LINEB i/o bank,address,data
Where: i/o bank = 0to 7. Specific functions are card dependent. Refer to your hardw are manual.
address = device dependent. Usually itis 0 to 3.
data = 0 to 255, data to output.
Function: Writes abyte to an |/O device.

M ode: Command, Run
Use: LINEB3,0,A Writesvaluein A to port A of 8255 at digital port.
Card: Basic command available for all cards. Device/Function changes slightly for each card. Refer to the

hardware manual.

DESCRIPTION
Thisstatement is equivalent to OUT in other BASICs. Datais written 8 bits atatime. LINE and LINE #
write 1 bitat atime. Thei/o bank selects a particular 1/O device listed in your hardware manual.

Use this command to access or program devices into modes not directly supported by RPBASIC-52.
RELATED
LINE,LINE# LINEB (function), LINE, LINE# (statement), CONFIG LINE

ERROR
BAD ARGUMENT i/o bank > 7, data > 255 or negative

EXAMPLE
The following example writes the value in variable 'C' to port B on the digital I/0 connector.

100 LINE B3,1,C

2-58

RPBASIC-52 PROGRAMMING GUIDE

LIST
Syntax: LIST

LIST line number

LIST line number - line number

Where: line number is a program line number
Function: Prints all or some of a program to the console.

Mode: Command
Use: LIST 10-100
Card: All
DESCRIPTION

The LIST command prints the program in RAM to the console device. LIST inserts spaces after the line
number and before and after instructions. Program listings are terminated witha <Ctrl-C>.

LIST line number ligs the program linenumber to the end of the program. LIST line number-line number
lists the program from the first line number to the second line number.

RELATED
LIST#

2-59

RPBASIC-52 PROGRAMMING GUIDE

LIST#

Syntax: LIST# port
LIST# port,line number
LIST# port,line number-line number
Where: port =0 or 1 or number of serial ports on your card.
line number = program line number
Function: Outputs the currently selected program to the serial printer port.

Mode: Command

Use: LIST#0

Cards: All. port limit is card dependent
DESCRIPTION

The L IST# command outputs all or some of the currently program in RA M to the specified serial port. port O
is the console port.

LIST# inserts gpacesafter the line number and before and after instructions L1ST#port, line number lists the
program from theline number to the end of the program. LIST#port,line number - line number lists the
program from the first line number to the second line number. These line numbers must be separated by a
dash(-).

RELATED
LIST

2-60

RPBASIC-52 PROGRAMMING GUIDE

LOAD
Syntax: LOAD [segment]

Where: segment = 01t0 7, see table below.
Function: Loadsa program from EPROM

Mode: Command

Use: LOAD 1 Loads program from memory segment 1

Card: All. Maximum segment is card dependent. Refer to your cards hardware manual.
DESCRIPTION

Up to 8 different programs can be saved and loaded from flash EPROM. The maximum number depends
upon the EPROM size. When no segment is specified, 0 is assumed.

Use LOAD to retrieve programs for editing. LOAD overwrites and replaces the previous program. Y ou
cannot merge programs. Programs are saved to flash EPROM using the SAVE n command.

For more information on segments and EPROM sizes, see the SAVE command.

RELATED
SAVE, EXECUTE

ERROR
BAD ARGUMENT segment>7

2-61

RPBASIC-52 PROGRAMMING GUIDE

LOG

Syntax: LOG (expr)

Function: Returnsthe natural logarithm (base "€") of expr which must evaluate to greater than zero. Calculated
to seven significant digits.

Mode: Command, run

Use: PRINT LOG (COS(0))
Cards: All

ERRORS

ARITH.UNDERFLOW expr or result isless than RPBASIC-52's smallest floating-point value of + 1E-127

ARITH.OVERFLOW expr or result is greater than RPBA SIC-52's largest floating point value of +
.99999999E+127

BAD ARGUMENT Attempt to take LOG() of zero

EXAMPLE

100 PRI NT EXP(-200), LOG(1.383901E-87)
>run

1.383901 E-87-200

2-62

RPBASIC-52 PROGRAMMING GUIDE

MTOP

Syntax: MTOP
MTOP = last valid RAM address

Function: Reads or assigns the top of external data memory which will be used by Basic for variable, string,
and RAM program storage

Mode: Command, run
Use: MTOP=30000
PRINT MTOP
Cards: All. Command is limiting on cards with 128K or more of RAM.
DESCRIPTIONS

The MT OP system control value is the maximum external data memory address which RPB ASIC-52 will use
for RAM program space and variable and string storage. MTOP is not necessarily the top of available
external datamemory. On cards with 32K of RAM, MTOPis automatically set to 7EOOH on power up. On
cards with 128K or more of RAM, MT OP is set to OFFFFH on power up.

RELATED
ST@,LD@

ERROR
MEMORY ALLOCATION MTOP has been assigned a value greater than top of external data memory.

EXAMPLE

? Mrop
65535

2-63

RPBASIC-52 PROGRAMMING GUIDE

NEW

Syntax: NEW

Function Erases current program in RAM. All variables and strings are cleared.
M ode: Command

Use: NEW
Cards: All
DESCRIPTION

The NEW command deletes the program currently in RA M, sets all variables equal to zero, and clears all
strings and multi-tasking interrupts. NEW does not effect the real-time clock or string allocation.

RELATED
CLEAR

2-64

RPBASIC-52 PROGRAMMING GUIDE

NULL
Syntax: NULL integer
Where: integer =0 -255
Function: Sets number of NULL characters output to user after a carriage return

Mode: Command
Use: NULL 100
Cards: All
DESCRIPTION

The NULL command controls how many NULL characters (O0H) are output following a carriage return.
After a reset, NULL = 0. Becausethisis acommand mode command, it cannot be used as part of a program.
The NULL count is stored at external data memory location 15H. Change the value of NULL in a program
using the DB Y (21)=expr instruction, where expr is any value between 0 and 255. No error isreturned if itis
greater than 255.

NULL is generally needed only if you have a slow printer connected to the serial printer port. Note that
NULL affects all serial ports.

Some terminal programs will advance the cursor when a null characteris received. This may result in an
strange looking display.

RELATED
LIST,PRINT

ERROR
BAD SYNTAX When integer is negative.

2-65

RPBASIC-52 PROGRAMMING GUIDE

ON COMS$
Syntax: ON COM $port,length,terminator,program line
ON COM $port

Where: port = the com port number 0 or 1
length = number of received characters for an interrupt
terminator = character to cause an interrupt
program line = executes subroutine when length or terminatoris met.
Function: Branches to a subroutine when length or terminator criteriais met.

Mode: Run

Use: ON COM$0,5,13,1000 Executes subroutine at line 1000 when either 5 charactersor a <CR> is
received.

Cards: RPC-320, RPC-330

DESCRIPTION

ON COMS$ is amultitasking statement. length and terminator parameters are checked on every received
character in the background. If either parameter is met, the program branches to the program line designated.

The first syntax enables ON COM $ while the second one turns it off.
When terminatoris 0, then character values are not checked. Only alength criteriawill cause an interrupt.

Review HARDWARE AND SOFTWARE INTERRUPTS in the first part of thismanual for interrupt
handling and multitaskinginformation. A far more extensive example isshown earlierin thismanual under
Serial Multitasking.

RELATED
COM$

ERROR
BAD ARGUM ENT when length or terminator > 255.

EXAMPLE
The following exam ple executes a program at line 1000 when either 5 characters or the <CR> character is
received. The received string is transferred to $(0) minus the <CR > character.

10 STRI NG 200, 20

20 ON COM$0, 5,13, 1000

100 | DLE

200 GOTO 100

1000 $(0)=COM$(0)

1010 PRINT "COM string:", $(0)
1020 RETURN

2-66

RPBASIC-52 PROGRAMMING GUIDE

ON

COUNT

Syntax: ON COUNT number, line number, count, program line

ON COUNT number, line number

ON COUNT number

Where: number is4to 11. It represents a counter number.
line number is 0-7 or 100-123 and is the digital I/O line number.
count is11t0 65535. Itisthe number of pulses needed for an interrupt.
program line is the subroutine to execute when count is reached.

Function: Enables count multi-tasking at a specific 1/O line. Optionally generates a software interrupt when the

specified number of counts at an I/O line is reached.

Mode: Run

Use: ON COUNT 10,7,200,5000 Executes a subroutine at line 5000 when 200 counts are reached at |/O
line 7.

Cards: RPC-320, RPC-330. line number is card dependent. Refer to your hardware manual.

DESCRIPTION

This command enables software counting. This command is not related to any hardware counters on the card.

The three syntaxes control counting as follows: T he first syntax with all parameters generates a softw are
interrupt when count is reached. The second syntax simply enablescounting atthe line number. The third
syntax turns off count multi-tasking for that number only.

A pulseis counted on a high to low transition. A line must be high and low for aminimum of 5 msto ensure
detection. The RPBASIC-52 operating system scans the specified lines every 5 ms. Thus, maximum
counting frequency is100 Hz. In practice, maximum is 95 Hz using a perfect square wave.

The current number of pulses at a counter number is read using the COUNT function. To reset or zero a
count value, re-execute ON COU NT again for that particular number.

number isfrom 4 to 11 to distinguish it from the other hardware counters on board.
Review HARDWARE AND SOFTWARE INTERRUPTS in the first part of thismanual for interrupt

handling and multitasking information. Read COUNT MULTITASKING earlier in this manual for asummary
of operation.

RELATED

COUNT function

ERROR

BAD ARGUM ENT when number is out of range.

EXAMPLE

The following example sets line 0 as a counter and branches to a subroutine when this line is broughtlow 10
times

10 ON COUNT 4, 0, 10, 1000
20 I DLE
30 GOTO 20

100(5 PRI NT "Counter 4 interrupt"
1010 RETURN

This example makes line 3 a counter only input. Itsvalueis printed every second using COUNT function.

2-67

RPBASIC-52 PROGRAMMING GUIDE

10 ON COUNT 10, 3
20 ONTICK 1, 1000
30 GOTO 30

1000 PRI NT COUNT(10)
1010 RETURN

2-68

RPBASIC-52 PROGRAMMING GUIDE

ONERR

Syntax: ONERR line number

Function: Goesto line number on arithmeti c error, bad argument, and hardw are errors.
Mode: Run

Use: ONERR 1000
Cards: All
DESCRIPTION

The ONERR instruction trapsarithmetic errorsand hardware problems, transferring control to line number.
ONERR can be used to handle errorsgenerated due to bad user input from and INPUT instruction. ONERR
isa GOTO, not a GOSU B. Consequently, there is noeasy way to resume program execution. The control
and argument stacks are cleared so all GOSUB 's, FOR-NEXT loops, etc. are cleared.

Error codes are stored at external memory location 257 (101H) and are accessed using the XBY instruction.

Code Error
0AH (10) DIVIDE BY ZERO
14H (20) ARITH OVERFLOW
1EH (30) ARITH UNDERFLOW
28H (40) BAD ARGUMENT
32H (50) HARDWARE

EXAMPLE

100 ONERR 1000
110 A=1/0
1000 PRI NT "Error code:", XBY(257)

>run
Error code: 10

2-69

RPBASIC-52 PROGRAMMING GUIDE

ON GOSUB
Syntax: ON expr GOSUB line0f linel [,line2...]]
Where: expr = 0 to number of subroutines after GOSUB
linen = subroutine line number to execute
Function: Calls subroutine based on value of expr.

Mode: Run

Use: ON A GOSUB 100, 200, 500
Cards: All

DESCRIPTION

The ON-GO SUB instruction conditionally branches to one of several possible subroutines depending on the
value of expr. expr must evaluate to greater than or equal to zero. If expr evaluates to zero, execution
branches to /ine. When expr evaluates to one, execution branches to /inel, etc. If necessary, expr is truncated
to an integer.

ON-GOSUB saves the location of the program statement after ON-GOSU B on the control stack and
immediately transfers program control to the selected subroutine. The subroutineis then executed. When
Basic encountersthe RETURN instruction, program executionresumes a the program statement ater ON-
GOSUB. ON-GOSUB instructionscan be nested.

One or more of linen may be the same, to ex ecute the sam e subroutine with different expr values. At least
one linen must be provided. linen can bein any order.

RELATED
ON GOTO, GOSUB, RETURN

ERRORS
BAD ARGUMENT The value of exprislessthan 0
BAD SYNTAX The expr value is larger than the number of subroutinelocationsprovided, or commas
were omitted between { subr n line#} values, or no subroutine locations were given.
C-STACK Attempted recursion caused control gack overflow
EXAMPLE
10 P=2
20 ON P GOSUB 1000, 3000, 2000
30 END

1000 PRINT "Line 1000
1010 RETURN
2000 PRI NT "Line 2000
2010 RETURN
3000 PRI NT "Line 3000:
3010 RETURN

>run
Li ne 3000

2-70

RPBASIC-52 PROGRAMMING GUIDE

ON GOTO

Syntax: ON expr GOTO line0f linel [line2...]]

Function: Branches to a program line based on expr value.

valuate to greater than or equal to zero; if expr evaluates to zero, execution branches to { Oth line#} ; if expr
evaluates to one, execution branches to { 1st line#}, etc. Commas shown are required.

Mode: Run

Use: ON A/5 GOTO 100, 200, 500
Cards: All

DESCRIPTION

The ON-GOTO instruction conditionally branches to linen where 'n' is the value of expr. The expr must
evaluate to greater than or equal to zero. When expr evaluates to zero, execution branches to line0). When
expr evaluates to one, execution branches to /inel, etc. If necessary, expr istruncated to an integer.

One or more of the program lines may be the same, to GOTO the same location with different expr values.
At least one program linemust be provided. Program lines may occur inany order, for example, ON A
GOTO 500,700,600.

RELATED
GOTO, GOSUB, ON-GOSUB

ERRORS
BAD ARGUMENT Thevalue of exprislessthan 0.
BAD SYNTAX The expr value is greater than the number of {"nth" line#} numbers provided, or
commas were omitted between {line#} values, or no line numbers were provided after

the ON-GOTO.
EXAMPLE
10 p=2
20 ON P GOTO 1000, 2000, 3000
30 END
1000 PRI NT "Line 1000"
1010 END
2000 PRINT "Line 2000"
2010 END
3000 PRINT "Line 3000"
3010 END
>run
Li ne 3000

2-71

RPBASIC-52 PROGRAMMING GUIDE

ONITR
Syntax: ONITR number,line number
ONITR number
ONITR line number
ONITR
Where: number = interrupt line. Thisis card dependent. Refer to your hardw are manual.
line number = Subroutine line number to go.
Function: Branchesto a service subroutine on an external or counter interrupt.

Mode: Run
Use: ONITR 0,5000 Executes a subroutine at line 5000 on hardware interrupt O.
Cards: Basi c command avai lable for all cards. number may or may not be used. Refer to your hardw are

manual for more information.

DESCRIPTION
ONITR provides a way to regpond to hardware interrupts. It replacesONEX1 in BASIC-52. Interrupts can
be external through theopto isolator, external TTL, or any number of card dependent sources. The number of
interrupts avail able depend upon the card type. Refer to your hardware manual for specific information.

The first two syntaxes are for the RPC-330. The second two are for the RPC-320 and RPC-52.
Hardw are interrupts are edge sensitive and latched. When the current RPBA SIC program statement is
completed, execution branches to the subroutine specified by /ine number. Interruptlatency is determined by

the current program statement. The IDL E command provi des the fastest response to an interrupt.

You mug exit an ONITR using the RETI staement. Failure todo so prevents other ONITR and ONTICK
interrupts.

To turn off ONITR, refer to the card's hardware manual.
ONITR can beinterrupted only by an ONTICK interrupt. Also, ONITR can interrupt any other multi-tasking
statement (ON L INE, ON COM$, ON KEY PAD, etc.) but cannot be interrupted by them. An interrupt pulse

to the card must be at least 1 micro-second long, low level.

RELATED
RETI

ERRORS
none

2-72

RPBASIC-52 PROGRAMMING GUIDE

EXAMPLE
The following example responds to an external interrupt on the RPC-330.

10 ONI TR 1, 1000 Declareinterrupt
Other program initialization

200 | DLE Wait for interrupt
210 IF F =0 THEN 200 If notdone

Program continues

990 END

1000 PRINT "In interruptPrint something
1010 C=C+1 Increment counter

1020 | F C=5 THEN F=1 Set flag on 5times
1030 RETI

2-73

RPBASIC-52 PROGRAMMING GUIDE

ON KEYPAD
Syntax: ON KEYPAD subroutine line
ON KEYPAD

Where: subroutine line = program to execute
Function: Branches to a subroutine when a keypad switch is pressed.

Mode: RUN

Use: ON KEYPAD 1000
Cards: RPC-320, RPC-330
DESCRIPTION

Program branches when any key is pressed on the keypad. Use the routine below to build a string.

Review HARDWARE AND SOFTWARE INTERRUPTS in the first part of thismanual for interrupt
handling and multitasking information.

RELATED
KEYPAD, CLEAR KEYPAD

ERRORS
none

EXAMPLE
The following program sets up a string array and keypad multi-tasking. When the enter key is pressed, the
string is printed. Keypad position 16 is designated as enter while 12 is clear.

10 STRI NG 200, 20 Initialize string area
20 $(0) = "123A456B789C* 0#D" Initialize keypad string
30 P=1 String position pointer
40 ON KEYPAD 500 Decl are interrupt

50 PRINT "Enter a nunber from the keypad",
REM Rest of program continues
REM Scan keypad fl ag

210 IF PF = 0 THEN 210 Check flag. Prints string
220 PRI NT when 'enter' is pressed.
230 PRINT "Entered string is: ",$(2)

240 PF = 0

250 GOTO 210

500 A = KEYPAD(O0) Get keypad character

520 IF A = 12 THEN 600 : REM Process cl ear Add ot her traps as needed
530 IF A = 16 then 700 : REM process enter

540 A=ASC($(0), A) Get ASCII| equival ent
550 PRI NT CHR(A),

560 ASC($(2),P) = A Put into keypad input $
570 P = P + 1 Updat e position pointer
580 ASC($(2),P) 13 Set CR as end of string
590 RETURN

600 REM Cl ear input string

610 $(2) = ""

620 P = 1

630 RETURN

700 REM ' Enter' processing

710 P =1

720 PF = 1

730 RETURN

2-74

RPBASIC-52 PROGRAMMING GUIDE

ON LINE
Syntax: ON LINE number,1/0 line,subroutine line

ON LINE number

ON LINE ON/OFF [,CLEAR]

Where: number = 0 to 7, is the interrupt reference number
I/0 line=0to 7 or 100 to 123. Line number rangeis card dependent.
subroutine line = program subroutine to execute on line change
ON/OFF = enable/ suspend ON LINE checking
CLEAR = clears all line change flags

Function: Branches to a service subroutine when an 1/0O line changes state.

Mode: RUN

Use: ON LINE 3,7,5000 Executes a subroutine at line 5000 when line 7 changes.
Cards: RPC-320, RPC-330

DESCRIPTION

Up to 8 digital 1/0 lines can be monitored for changesin state. Lines are monitored by the operating system
every 5 ms. When aline changed from the last monitored state, aflag is set. Thisflag ischecked at the end
of the current Basic statement. Thus, an interrupt is generated when a line goes low or high. Unless an
ONTICK or ONITR subroutineis currently executing, thesubroutine line is then executed.

number isfrom 0to 7. It acts, to some extent, as a priority arbitrator. It does not have any relationship to 770
line or subroutine line except to number interrupts. More information later.

An ON LINE interrupt is turned off by specifying number only. ON LINE interrupts can be turned off any
time in a program.

I/0 line numbers 100-123 correspond to opto rack positions Use the table in the DIGITAL 1I/0 chapter to
make the correspondence between an opto position and actual digital 1/0 line. Lines 0-7 are designated LO-
L7 on the card.

ON LINE ON/OFF enables/suspends line interrupts. Lines are still checked every 5 ms by the operating
system. If alinedid change, it is flagged. ON LINE OFF suspends interrupts while ON LINE ON resumes
this type of interrupt. Use ON LINE OFF when an 1/0 line interrupt cannot be preempted by any other line
interrupt. ON LINE ON resumes interrupts. When this command is executed, any changed lines cause an
interrupt. To cancel or clear interrupts, use the CLEAR parameter shown above. All line change flags are
reset and nointerrupts are generated until aline changes state.

When two lines chang e betw een the 5 ms sampling time, the higher numbered interrupt takes priority .
However, if the same or another line changes in the next sample period, its subroutine will take priority.

For an interrupt to occur, aline must be stable for at least 5 ms. When a line changes faster than this, one or
both of the foll owing scenarios happen: Since lines are sampled every 5 ms, apulsed signal can be missed.
Useoneof the ONITR interupts to capture this kind of signal. The second scenario is more of a problem.

ON LINE generates subroutines When aline change is detected, a subroutine is generated. When the
subroutine is long and a line change quick enough, these routines become nested. When too many routines
are stacked, program execution is terminated and a control-stack error is returned. Maximum nesting level
depends upon other control structures currently running. 30 levelsis areasonable number. However, if a
number of FOR-NEX T loops are running, this number is diminished.

There are two ways to take care of this program. First, make the service routine very short - less than 3
commands. Second, isto execute the ON LINE OFF command. This shuts off all ON LINE execution.

2-75

RPBASIC-52 PROGRAMMING GUIDE

The overall speed of RPBASIC-52 slows down by about 3% when all ON LINE tasks are enabled.

Review HARDWARE AND SOFTWARE INTERRUPTS in the first part of thismanual for interrupt
handling and multitasking information.

RELATED none

ERRORS
BAD A RGUM ENT when number > 7 or 1/0 lineis not between 0-7 or 100-123.

EXAMPLE
The following example sets up several interrupts.

10 ON LINE 0, 1,1000
20 ON LINE 5, 2,2000
30 ON LINE 3, 3,3000

1000 PRINT "In LINE O interrupt”
1100 RETURN

2000 PRINT "In LINE 5 interrupt."”
2010 PRI NT "Suspending other line interrupts."”
2020 ON LI NE OFF

2306 PRI NT "Resum ng line interrupts."
2310 ON LINE ON , CLEAR
2320 RETURN

3000 PRINT "In LINE 3 interrupt."
3010 RETURN

Lines 10-30 set up ON LINE interrupts for lines 1, 2, and 3. For this example, line 5 cannot be interrupted by
any other line changes. Line 2020 suspends interrupts. The program continues to processthis subroutine and
lines are still checked for changes. Line 2310 resumes line interrupts but it also clears out previous changes.

2-76

RPBASIC-52 PROGRAMMING GUIDE

ONTICK

Syntax:

ONTICK time,line number

Where: time = timeinterval from 0.01 to 327
line number = line to branch

Function: Calls subroutine at line number every timeinterval.
Mode: Run

Use: ONTICK 1.25,500

Cards: All

DESCRIPTION

ONTICK calls asubroutine every timeinterval. timeranges from 0.010 seconds to 327.7 seconds
(approximately 5.5 minutes). time can be specifiedin increments assmall as0.005 seconds. ONTICK
interrupts are turned off when time= 0. A line number must still be provided even though it is not used.

The interval period can bereset at any time in a program. When an ONTICK statement is executed, an
interrupt will occur in time seconds. Time accumulated since the last interrupt is discarded.

NOTE: Usethe RETI command to exit this subroutine. Failure to do so prevents future ONTICK interrupts.

Make sure your ONTICK subroutine can finish before the next interrupt. If the program isin the subroutine
longer than the specified time interval, the next one will be missed.

Thisinterrupt has the highest priority of any others. ONITR can interrupt any other routine, but no other
interrupt can take over this one.

RELATED
RETI

ERRORS

BAD ARGUMENT When time> 327.6 or negative

BAD SYNTAX When any parameters left out
INVALID LINE When line number not found
EXAMPLE

The following example will interrupt 5 times before it iscanceled at line 220.

10 A = .15

20 ONTICK A, 200

30 IF C<4 THEN A=A+1 : GOTO 30
40 END

200 PRINT A

210 cC=C + 1

220 IF C = 5 THEN ONTI CK 0, 200
230 RETI

>run
145. 15
286. 15
431. 15
575. 15

The IDL E command may be used to "wait" for an ONTICK interval interrupt.

2-77

RPBASIC-52 PROGRAMMING GUIDE

PEEKB
Syntax: PEEK B (segment,ad dress)
Where: segment =010 7, specifiesa 64K segment
address = 0 to 65535, byte address in a segment
Function: Readsa byte from RAM

M ode: Command, Run
Use: A = PEEKB(1,AD)
Cards: All
DESCRIPTION

Thisfunction is used in conjunction with POKEB. Data is retrieved from any memory location. PEEKB
inputs 1 byte of data. This function operates in much the same way as XB'Y does except PEEKB can access
512K of RAM.

See POKEB command for addressing and segment info.

RELATED
POKEB

ERRORS
BAD SYNTAX If B, segment, or address is missing.
BAD DATA If segmentis> 7, or address > 65535

EXAMPLE
The following example reads digital 1/0 port A and savesit to RAM. The values are then retrieved and
printed back.

10 FOR N=0 TO 500
20 POKE B1, N*2, LI NEB(3, 0)
30 NEXT

40 FOR N=0 TO 500

50 A=PEEKB(1, N*2)

60 PRI NT A,

70 NEXT

2-78

RPBASIC-52 PROGRAMMING GUIDE

PEEKF
Syntax: PEEKF(segment,address)
Where: segment =010 7, specifiesa 64K segment
address = 0 to 65535, byte address in a segment
Function: Reads afloating point number from RAM. Floating point rangeis +/- 1E-127 to +/-
0.99999999E+127

M ode: Command, Run
Use: A = PEEK F(1,AD)
Cards: All
DESCRIPTION

Thisfunction is used in conjunction with POKE F. Daa s retrieved from any memory location. PEEK F
retrieves a floating point number saved by POKE F.

PEEKF can access up to 512K of ram by selecting asegment and an address. A segment selects a 64K block
while the address selects a location within this block.

Each floating point number requires 6 bytes. address must be incremented indexed 6 bytes for each value.
See POKEB and POKEF com mands for addressing and segment info.

RELATED
POKEF

ERRORS
BAD SYNTAX If B, segment, or address is missing.
BAD DATA If segmentis> 7, or address > 65535

EXAMPLE
The following example reads the A -D port, multiplies it by a constant, and savesit to RAM. The values are
then retrieved and printed back.

10 FOR N=0 TO 500

20 A = AIN(1) * 0.2344
20 POKE F1, N*6, A

30 NEXT

40 FOR N=0 TO 500

50 A=PEEK F(1, N*6)

60 PRI NT A,

70 NEXT

2-79

RPBASIC-52 PROGRAMMING GUIDE

PEEKW
Syntax: PEEKW (segment,ad dress)
Where: segment =010 7, specifies a 64K segment.
address = 0 to 65535, word address in a segment.
Function: Readsan unsigned 16 bit number from RAM

M ode: Command, Run
Use: A = PEEKW(0,AD)
Cards: All
DESCRIPTION

Use this function in conjunction with POK EW. Dataisretrieved from any memory location as asingle 16 bit
(2 byte) number. Numbersin the range of 0 to 65535 are retrieved. Two bytes of data are required for data
retrieval.

PEEKW can access up to 512K of ram by selecting a segment and an address. A segment selects a64K block
while the address selects a location within this block.

See POKEB for addressing and segment information.

RELATED
POKEW

ERRORS
BAD SYNTAX If W, segment, or address is missing.
BAD DATA If segmentis> 7, or address > 65535

EXAMPLE
This example takes 500 readings from analog input 0, saves it to segment 1 of a 128K RAM, and then prints
out all of the values

10 FOR N=0 TO 500

20 POKE WL, N*2, Al N 0)
30 NEXT

40 FOR N=0 TO 500

50 A=PEEKW 1, N*2)

60 PRI NT A,

70 NEXT

2-80

RPBASIC-52 PROGRAMMING GUIDE

PEEKS
Syntax: $(n) = PEEK$(segment,ad dress)
Where: segment = 0t0 7, specifiesa 64K segment
address = 0to 65535, starting string address in a segment
Function: Retrieves astring from RAM.

Mode: Command, Run

Use: $(0) = PEEK $(1,210)
Cards: All

DESCRIPTION

Use this command to retri eve strings stored in RAM memory using the POK E$ command. segment specifies
the 64K segment to save to. 0 isthe base segment where RPBA SIC-52 runs its programs. Setting MTOP to a
number less than the top of memory will providea 'protected' area from the Basic program.

Refer to the POKEB statement for addressing and segment information.

NOTE: Thiscommand works only when it isassigning another stringvariable. A BAD
SYNTA X error is retumed when it is part of a PRINT, IF-THEN, ASC, or other command
or function. Use thisfunctiononly as shown inSYNTAX above.

RELATED
POKE$

ERRORS
BAD SYNTAX If $, segment, or address is missing. Also when this function is part of
another function or command.
BAD DATA If segmentis>7

EXAMPLE
The following example assumes MTOP = 30000. It will assign and recover a string from
RAM.

10 AD = 30000

20 STRI NG 100, 20

30 $(0) = "Test string"
40 POKE$ 0, AD, $(0)

50 $(1) = PEEK$(0, AD)
60 PRI NT $(1)

2-81

RPBASIC-52 PROGRAMMING GUIDE

PI

Syntax: PI

Function: Stored constant 3.1415926
Mode: Command, run

Use: PRINT PI

Cards: All

DESCRIPTION

Pl is closer to 3.141592653, so proper rounding should be 3.1415927. However, trig errors
were greater when 7 w as used than 6 for the last digit.

2-82

RPBASIC-52 PROGRAMMING GUIDE

POKEB
Syntax: POKEB segment,address,d ata
Where: segment =010 7, specifiesa 64K segment
address = 0 to 65535, specifies address in asegment
data = 0 to 255, number to save to RAM
Function: Writes one data byteto RAM.

M ode: Command, Run
Use: POK E B1,2100,D
Cards: All
DESCRIPTION

Use POKEB to write to any one of 512K memory locations. The maximum number of
locationsis limited by the amount of RAM installed.

WARNING: RPBASIC-52 does not check theaddress. It is possible to poke into the
program, stack, or variable areas. Results are unpredictable. Poke into
memory above M TOP for safest operation.

PEEK and POK E statements and functions access memory by specifying a segment and an address. A
segment is a 65,535 byte block. The largest ssgment number allowed depends upon the amount of RAM
installed. A system with 32K of RAM can only access 1 segment, numbered segment 0. When 128K is
installed, two segments, 0 and 1, are accessible. A 512K system has 8 segments, num bered O through 7.
Another way of looking at asegment isits address equivalent. The general addressing form is: SAAAA. S
isthe segment and AA AA isthe address.

RPBASIC-52 always uses segment 0 for variable and program storage. Setting MTOP to a number below the
top of RAM ensures that RPBA SIC-52 will not usethe memory above thataddress. Ina 32K RAM system,
the top of memory is address 32767. In a 128K or larger system, itis 65535. In 128K or 512K systems, all of
the memory in segment 1 and higher isavailable for data storage.

Maximum segment and address for a given system RAM size are:

RAM Maximum Maximum
Size Segment Address
32K 0 32767
128K 1 65535
512K 7 65535
RELATED
PEEKB, XBY
ERRORS
BAD SYNTAX If B, segment, address, or data 1S missing.
BAD DATA If segmentis> 7, address > 65535 or negative, data > 255 or negative.
EXAMPLES
10 POKE BO, 64000, D Pokesto segment 0, address 64000
20 POKE W, 0, A Pokes aword (2 bytes) to segment 1, address 0

30 POKE $2, 30, $(1) Pokes a string to segment 2, address 30.

2-83

RPBASIC-52 PROGRAMMING GUIDE

POKEF
Syntax: POKEF segmen t,address,d ata
Where: segment = 0to 7, specifiesthe 64K segment

address = 0to 65535, location in segment to save to

data = +/- 1E-127 to +/- 0.99999999E+127, number tosaveto RAM
Function: Writes afloating point number to RAM.
Mode: Command, Run
Use: POKE F1AD,DA
Cards: All
DESCRIPTION

Use POKEF to write floating point numbersinto RAM. Program "constants" such as calibration tables are
saved to battery backed RAM .

WARNING: RPBASIC-52 does not check the address. It is possible to poke into the program, stack, or

variable areas. Results are unpredictable. Poke into memory above MT OP for safest
operation.

Each floating point number requires 6 bytes of RAM. W hen storing to RAM, separate addresses by at least 6
bytes. address isthe starting addressin RAM. Data is writtento from address to address + 6. For example, if
the first addresswas 0, the nextis 6, third 12, and so on. An easy way to calculate an address is to use an
index number and multiply it by 6. By adding a constant, different sections of RAM may be used. See the
POKEB command for segment and address information.

RELATED
PEEKF

ERRORS

BAD SYNTAX If W, segment, address, or data is missing.
BAD DATA If segmentis> 7, address or data > 65535 or negative

EXAMPLES

The following exam ple takes data from an analog input, multiplies it by a constant, and saves it to segment 1
of the 128K RAM.

1000 FOR N =0 TO 7
1010 POKE F1, N*6+100, Al N(N) *1.2383
1020 NEXT

The equation "N*6" is an index multiplier.

Thenext example printsoutthe datafrom RAM.

500 FOR N =0 TO 7
510 PRI NT PEEKF(1, 120+N*6)
520 NEXT

The expression "120+N *6" performs two functions. First, 120 is afixed offset into RA M. This offset is
necessary when allocating sectionsof RAM for storage parameters (strings, byte data, and other floating point
numbers). "N*6" indexes the floating point number into RAM so it does not overwrite other valid numbers.

2-84

RPBASIC-52 PROGRAMMING GUIDE

POKEW
Syntax: POKEW segment,address,d ata
Where: segment = 0to 7, specifiesthe 64K segment

address = 0to 65535, location in segment to save to
data = 0 to 65535, number tosaveto RAM

Function: Writes an unsigned 16 bit number to RAM.

M ode: Command, Run

Use: POKE W1,AD,DA

Cards: All

DESCRIPTION
Use POKEW to write 16 bit numbersinto RAM. The results of an A-D conversion, for example, can be
saved.

WARNING: RPBASIC-52 does not check the address. It is possible to poke into the program, stack, or
variable areas. Results are unpredictable. Poke into memory above MT OP for safest
operation.

See the POKEB command for segment and address information.

RELATED
PEEKW

ERRORS
BAD SYNTAX If W, segment, address, or data 1S missing.
BAD DATA If segmentis> 7, address or data> 65535 or negative

EXAMPLES
Thefollowing example takes data from the AIN function and saves it to segment 1 of the 128K RAM.

1000 FOR N =0 TO 7
1010 POKE WL, N* 2+100, Al N(N)
1020 NEXT

Thenext example printsoutthe datafrom RAM.

500 FOR N =0 TO 7
510 PRI NT PEEKW 1, 100+N*2)
520 NEXT

2-85

RPBASIC-52 PROGRAMMING GUIDE

POKES$S
Syntax: POKES$ segment,address,string
Where: segment = 0to 7, specifiesthe 64K segment

address = 0to 65535, location in segment to save to
string = string variable to save

Function: Save string variable to RAM memory.

M ode: Command,Run

Use: POKES$ 1,30000,%$(1)

Cards: All

DESCRIPTION

POK E$ is used to save literal stringsin RAM memory. Strings of any length can be saved.
When poking several strings, memory should be divided into "blocks" equal to the length specified in the
STRING statement plus 1. POKE$ does not check to see if it is writing over other variable information.

WARNING: RPBASIC-52 does not check the address. It is possible to poke into the program, stack, or

variable areas. Results are unpredictable. Poke into memory above MT OP for safest
operation.

Refer to the POKEB statement for segment and address information.

POK E$ requires astring variable in order to work. If stringisin quotes, a data error is returned.

RELATED
PEEK$
ERRORS
BAD SYNTAX If 8, segment, address, or data iS missing.
BAD DATA If segment is> 7, address > 65535 or negative, string not valid.

2-86

RPBASIC-52 PROGRAMMING GUIDE

POP

Syntax: POP variable [,variable,...]

Function: Takesavaue PUSHed to astack and assignsit to the variable.
Mode: Command, run

Use: POP X,Y,Z

Cards: All

DESCRIPTION

Multiple variables can be POPped off the stack by separating the variables with commas. The first value
POPped is the last value PUSHed.

POP and PUSH are useful fortransferring data values between subroutines They allow you to write a
subroutine with arbitrary variable names. Data transfers to and from the subroutine can be performed by
PUSH and POP, rather than by equating variable names.

RELATED
PUSH, LD@, ST@

ERROR
A-STACK No variable on the stack when the POP instruction executed.

EXAMPLE

100 FOR N=O TO 7
110 PUSH Al N(N)
120 NEXT

130 FOR N=0 TO 7
140 POP A

150 PRI NT A*. 00214
160 NEXT

>run

[eNoNoNoNe]

. 536
3. 445
2.334

2-87

RPBASIC-52 PROGRAMMING GUIDE

PHO.

PH1.
Syntax: PHO. expr
PH1. expr
Where: expr = any mathematical expression
Function: Print in hexadecimal format following the number with an "H".

Mode: Command, run

Use: PHO. PEEKB (1,3000)
Cards: All

DESCRIPTION

The PHO. and PHL1. instructions work like PRINT instruction except that it print valuesin HEX. The value
printed is alway s a truncated integer and is followed with an "H" to indicate hexadecimal format. If expr
evaluates to afractional number within integer range, expr is truncated and displayed in hex format. If expris
not within integer range (0 through OFFFFH/65535), the normal decimal PRINT mode is used. PHO.
suppresses tw o leading zeros if expr evaluates to less than OFFH. PH 1. always prints four hexadecimal digits.

If there is noexpr, acarriage return - line feed combination (a blank line) will be output. An expr may be any
combination of instructions/operators and variables, strings, or literd values. More than one expr may be
output by separating them with commas. Values are printed with aleading space alist of values ssparated
by commas will thus print with oneintervening. Thisis different from the decimal PRINT instruction which
prints values with a trailing blank. Strings and literals are output with no added blanks. If acommais the last
character in the list then a carriage return/linefeed is suppressed.

EXAMPLE

100 PHO. A

2-88

RPBASIC-52 PROGRAMMING GUIDE

PRINT

PRINT #,

P.

?

Syntax: PRINT expr
P. expr
? expr

PRINT#port,expr
P#port,expr
?#port,expr
Where: expr = any string, mathematical number, or calculation
port = serial output port 0 or 1. Your card may have more ports.

Function: Prints value of expr to a serial port

M ode: Command, run

Use: PRINT "String",$(0),AIN(0)*.00214

Cards: PRINT#, P.#, and ?# only on RPC-320, RPC-330.
DESCRIPTION

PRINT is used to send srial datato any port. Defaultis COM 0. Use port or UO to re-direct output to COM
1 or others.

If there isnoexpr, acarriage return - line feed combination is sent. expr is any combination of
instructions/operators and variables, strings or literal values. More than one expr may be output by
separating them with commas. Values are printed with aleading andtrailing space; alist of positive values
separated by commas will thus print with two intervening blanks. A "+" isimplied. The"-" symbol precedes
negative values and takes the place of the normal preceding space. Strings and literals are output with no
added blanks. If acommais the last character in the lig then the normal <CR><LF> is suppressed.

The shorthand versions P. and ? are converted to PRINT after each program lineis entered, so aP. or ?is
never listed.

The PRINT#port, instruction functions exactly like the PRINT instruction, but it directs output to the
designated serial port. When using this syntax, any output directed by the UO command is bypassed.

P.# and ?# are shorthand for PRINT#.

RELATED UO, CONFIG BAUD

EXAMPLE

100 STRI NG 200,20 : $(0)="String" : B=PI*5
110 PRI NT $(0), B, A N(0)*.00215

>run

String 15.707963 O

2-89

RPBASIC-52 PROGRAMMING GUIDE

PUSH
Syntax: PUSH exprl [,expr2,...]
Where: exprisanumeric value
Function: Puts the value of expr to the argument stack. The first value PUSHed and is the last POPped.
Mode: Command, run

Use: PUSH XY
Cards: All
DESCRIPTION

PUSH and POP instructions pass values to Basic subroutines. The last value pushed is the last expression in
the PUSH instruction, and is also the first popped off the stack. Multiple expressions can be pushed onto the
argument stack by separating the expressions with commas.

The PU SH and POP instructions alleviate some of the problems of global variables in Basic. They eliminate
the need to equate subroutine variables to global variablesused by the program which called the subroutine.

The stack is cleared when a new program is loaded usng EXECUTE.

RELATED
POP, LD@, ST@

ERROR
A-STACK Attempt to push too many values on the argument stack. Typically no more than 32 values may
be PUSHed onto the stack beforeitisfull.

EXAMPLE
Please refer to the POP example.

2-90

RPBASIC-52 PROGRAMMING GUIDE

PWM
Syntax: PWM line, ltime, htime[,cycles]
Where: line=0to 8or 100to 123. Thisis card dependent. Refer to your hardware manual.
Itime = 0 to 255, number of 5 ms periods line is low
htime = 0 to 255, number of 5 ms periods line is high
cycles = 0 to 65535, optional number of pulsecycles
Function: Produces pulse width modulated output.

M ode: Command, Run
Use: PWM 8,3,B,5000
Cards: All
DESCRIPTION

Any digital 1/0 lines may output a Pulse W idth Modulated signal. Pulses can run indefinitely or for a specific
number of times. PWM may be used to control the brightness of a display or send a number of pulsesto a
motion controller.

WARNING: PWM continues to run inthe command mode.

Low and high times are referenced from unbuffered outputs. Outputs from high current lines are inverted, so
high and low times are reversed.

cycles refer to the number of low to high transitions from an unbuffered output. When a PWM output is
finished counting, that line goes and remains high.

A PW M output is shutoff the quickest by specifying 1 for htime, Itime, and cycles. This can be done as part of
a program or in the immediate mode.

RELATED
CONFIG LINE

ERRORS
BAD SYNTAX If any parameters left out.
BAD ARGUMENT When any parameters are out of range.

EXAMPLE
The following example sets outputs a PWM signal to line 7. Line 7 is configured for an output on power-up.

PW 7,2,1

2-91

RPBASIC-52 PROGRAMMING GUIDE

READ

Syntax: READ variable [,variable, ...]

Function: Sequentially assigns the values of data provided in the DAT A statement to the variables in alist.
Mode: Run

Use: READ X,Y,Z
Cards: All
DESCRIPTION

Multiple variables following one READ instruction must be separated by commas. READ must always be
followed by at least one variable.

See RESTORE for examples and more information.

2-92

RPBASIC-52 PROGRAMMING GUIDE

REM
Syntax: REM any ASCII text
Function: Allows remarksin a program or on command line
Mode: Command, run
Use: 100 REM You can put any thing you want here
REM T his remark has no line number so will be discarded by RPBASIC-52
Cards: All
DESCRIPTION

The REM indruction lets you add commentsto your progran. Any text after a REM isignored. REM
instructionscannot be terminated with a colon, but they can follow colons. RPBASIC-52 lets you use REM
in command mode and w hile downloading programs. A REM without a preceding line number is ignored by
RPBASIC-52. This allows you to place comments in an off-line source code text file and have them stripped
out when you download the text file tothe card.

Appropriatecomments make your programs easer to understand and maintain, but do slow program
execution and consume program memory.

Multiple statements per line following a REM are ignored since they are considered part of the remark. Refer
to the example.

EXAMPLE

100 REM A comment
120 PRI NT A : REM PRI NT A+2

>run
0

2-93

RPBASIC-52 PROGRAMMING GUIDE

RESTORE

Syntax: RESTORE

Function: Resets the READ instruction pointer to the beginning of the DATA list.
Mode: Run

Use: RESTORE
Cards: All
DESCRIPTION

After aRESTORE statement is executed, the next READ statement accesses the first item in the first data
statementin the program.

ERROR
NO DATA - no DATA list provided.

EXAMPLE

100 READ A, B, C
110 PRI NT A, B, C
120 RESTORE

130 READ X, Y, Z
140 PRI NT X, Y, Z
150 READ A, B, C
160 PRINT A, B, C
150 DATA 1,2,3*2
150 DATA 6,9, 12

>run
1 2 6
1 2 6
6 9 12

2-94

RPBASIC-52 PROGRAMMING GUIDE

RETI

Syntax: RETI

Function: Return from ONITR or ONTICK interrupt. RETI must be the last instruction of the interrupt
subroutine.

Mode: Run

Use: RETI

Cards: All

DESCRIPTION

The RETI instruction causes you to exit from ONTICK, ONT IME (RPC-52 card only) and ONITR interrupts.
RETI functions like RETURN, but it clears software interrupt flags so that RPBASIC-52 can acknowledge
subsequent interrupts. If you don't execute the RET | instruction in the interrupt procedure, all future
interrupts, hardware and software, are ignored.

RELATED
ONITR, ONTICK

EXAMPLE

Refer to ONTICK and ONITR examples.

2-95

RPBASIC-52 PROGRAMMING GUIDE

RETURN

Syntax: RETURN

Function: Retumns program to next instruction following aGOSUB command or software interrupt (ON LINE,
ON KEY PAD, etc.)

Mode: Run

Use: RETURN

Cards: All

DESCRIPTION
RETURN is used as areturn from a GOSUB. Program execution continues at the statement following the

GOSUB.

2-96

RPBASIC-52 PROGRAMMING GUIDE

RND

Syntax: RND

Function: Returns a pseudo-random fractional number between zero and one indusive.
Mode: Command, run

Use: A=RND
Cards: All
DESCRIPTION

The RND operator uses a 16-bit binary seed and repeats after 66535 pseudo-random numbers. The initial
seedis the vdueof MTOP. The seed can bechanged by writing to address 10CH and 10DH using the XBY
command.

EXAMPLE

100 A=RND
110 PRI NT A

2-97

RPBASIC-52 PROGRAMMING GUIDE

SAVE
Syntax: SAVE [segment]

Where: segment=0upto7
Function: Save program to flash EPROM.

Mode: Command
Use: SAVE 1
Cards: All
DESCRIPTION

Use SAVE to store programs in flash EPROM. The currentprogram in RAM is saved to the segment
specified. If no segment is specified, 0 is assumed. Up to 8 programs (totaling over 500K bytes) can be
saved, depending upon the flash EPROM type. Using EXECUTE, any of these 8 programs can be loaded and
run during run-time. UseLOAD to retrieve a program.

SAVE automatically determines the type of flash EPROM installed. When an attempt is made to save a
program to a segment larger than allowed by the EPROM type, an error message is returned.

The largest segment size depends upon the type of flash EPROM installed. The following table shows the
largest segmentfor aparticular EPROM.

EPROM Size Sector Segment
type Bytes size range

29C256 32K 64 0

29C040 512K 512 0-7

SAV E completely overwrites previous datain memory, up to the program size plus enough bytes to complete
a sector. A sector isthe number of bytes programmed in aflash at atime. For example, if a program was
only 100 byteslong and a 29C 040 isinstalled, 412 bytes of "filler" are also programmed. If aprogramis
1000 bytes long, 24 bytes of filler are programmed (2 sectors = 512 bytes). Sector sizes are not a concern
except to users of BSAVE command.

Maximum program size also depends upon the amount of RAM installed. A 32K RAM can run a 29K
program. A 128K or 512K RAM can execute up to a 60K byte program.

To find out the length of the program currently in RAM, type PRINT LEN in the immediate mode.
Frequently, the length of a program in RAM is 10% to 30% less than that in adisk file. Thisis because the
code is tokenized and commands are replaced with a single character.

When program requirements are small and data is large, some data can be saved to the flash EPROM using
the BSAV E command.
RELATED

BSAVE, EXECUTE, LOAD

ERROR
BAD DATA If segmentis> 7 or larger thanflash EPROM type.

2-98

RPBASIC-52 PROGRAMMING GUIDE

SGN

Syntax: SGN((expr)

Function: Returns +1 if expr is greater than zero, zero if the expr equals zero, and -1 if expr is less than zero.
Mode: Command, run

Use: PRINT SGN(SIN(X)))

Cards: All

DESCRIPTION
Use SGN in level control applications. If alevel ishigh or low, it can direct control to the appropriate
program.

EXAMPLE
100 ON SCGN(A) +1 GCsuUB 2000, 3000, 4000

2-99

RPBASIC-52 PROGRAMMING GUIDE

SIN

Syntax: SIN(expr)

Function: Returns the trigonometric SINE of expr which is assumed to be in radians. The value of expr must be
in the range of +/- 200,000.

Mode: Command, run
Use: PRINT SIN(PI/2)
Cards: All
DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate thefunction. These operators first reduce the
argument to a value that isbetween 0 and PI1/2. the algorithm used to reduce the vadue will reduce accuracy
when value islarge To maintain accuracy, keep the arguments for trig functions as small as possible.

ERRORS
ARITH.UNDERFLOW value or result isless than RPBASIC-52's smallest floating-point value of + 1E-127
ARITH.OVERFLOW value or result isgreater than RPBASIC-52's |argest floating-point value of
+.9999999E+127
DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES
10 PRI NT SIN(PI/2), COS(10*Pl), TAN(8* Pl / 4)
20 PRI NT ATN(PI)

>run

1 10
1.2626272

2-100

RPBASIC-52 PROGRAMMING GUIDE

SPC
Syntax: PRINT SPC(expr)
Where: expr = number of spaces to print
Function: Sends expr number of space characters (20H) from the serial port.
Mode: Command, run

Use: PRINT SPC(A*4),
Cards: All
DESCRIPTION

SPC must be used in conjunction with a print statement.

EXAMPLE

100 PRI NT SPC(80- A*4),

2-101

RPBASIC-52 PROGRAMMING GUIDE

STOP

Syntax: STOP

Function: Breaks program execution; resume with the CONT comm and.
M ode: Run

Use: STOP

Cards: All

DESCRIPTION

The STOP instruction lets you break program execution at specific locations in a program. Y ou candisplay
and modify variablesafter STOPping a program. STOP isuseful for program debugging. The CONT
command lets you resume program execution.

The line number printed after execution of a STOP instruction is the line number following the instruction
and not the line number containing the STOP instruction.

If you modify a STOPped program, CONT will be unable to continue execution.

RELATED
CONT, GOTO

ERROR
CAN'T CONTINUE Attempt to continue after editing a ssopped program, or atempt to execute CONT
without a prior STOP or <Ctrl-C>.

EXAMPLE
100 PRI NT "Ti ck=",TI CK(0)
110 STOP
110 GOTO 100

>run

A= 0
STOP - IN LINE 120

2-102

RPBASIC-52 PROGRAMMING GUIDE

STR
Syntax: A = STR(function,$(n)[,$(n)]))

Where: function= 0 to 14, specifies string functionto perform as described below.
Function: Performs string m anipulation, described below, per function number.

Mode: Command,Run
Use: A = STR(0,$(0))
Cards: RPC-320, RPC-330
DESCRIPTION

There are 11 gring manipulation functionsusing STR. Each function is described bel ow.

NOTE: Most of these functions require a string variable (such as $(0)) rather than a quoted string. Functions
which will allow quoted strings offer an alternae syntax immediately below the first one

Syntax: A = STR(0,%(n))
Description:
Returns number of charactersin a string. When string is not set equal to something, or the string number is
out of bounds, erroneous datais returned. Length limit is 254 characters.
Example:
10 STRING 100, 20
20 $(0)=" 123456789"
30 PRI NT STR(O, $(0))

run
10

Syntax: A = STR(1,%(n))
Description:
Convert letters 4 - Z to lower case. Variable A returns length of the string.
Example: 10 STRING 100, 20
20 $(0)="Sonme UPPER case"
30 A = STR(1, $(0))
40 PRI NT $(0)
run
some upper case

Syntax: A = STR(2,%(n))
Description:
Convert letters a - z to upper case. Variable A retums length of the string.
Example: 10 STRING 100, 20
20 $(1) = "Some | ower case."
30 A = STR(2, $(1))
40 PRI NT $(1)
run
SOME LOWER CASE.

2-103

RPBASIC-52 PROGRAMMING GUIDE

Syntax: A = STR(3,%(n))

Description:
Returns numbersin astring asareal number. Similar to VAL in other Basics. Leading spaces are ignored.
First non-number terminates conversion at last valid number. No valid numbers return 0. Number lengthis
limited tothe first 12 valid numbers and decimal in a string. This means a number no greater than
9999999999999 is converted to a number.

Example: 10 STRING 100, 20
20 $(2) = "-23.452volts"
30 A= STR(3,$(2))
40 PRINT A
run
-23. 452

Syntax: A = STR(4,%(n))
Description:
Trims spaces to left of first non-space character. Variable A returnslength of trimmed string.

Example: 10 STRING 100, 20
20 $(0) = " 1234"
30 A = STR(4, $(0))
40 PRI NT $(0)
50 PRINT A
run
1234
4

Syntax: A = STR(5,%(n))
Description:
Trims spaces from right side of 4ring. Variable A returns length of trimmed string.

Example: 10 STRING 100, 20
20 $(0) = "ABCDE
30 A = STR(5, $(0))
40 PRI NT $(0)
50 PRINT A
run
ABCDE
5

Syntax: A = STR(6,%(x),$(y))
A = STR(6,$(x)," string")
Description:
Appends one string into another. This function concatenates tw o strings in the form of $(x) = $(x) + $(y).
Length of new string isreturned in variable A. The variable $(y) could be a quoted string.

Example: 10 STRING 120, 40
20 $(0)="First part"
30 $(1)=" Second part"
40 A = STR(6, $(0), $(1))
50 PRINT $(0)
60 PRINT "Length:", A
70 A = STR(6, $(0)," last part")
80 PRINT $(0)
90 PRINT "Length:", A
run
First part Second part
Lengt h: 22
First part Second part |ast part
Length: 32

Lines 50 and 80 print the concatenated string $(0).

2-104

RPBASIC-52 PROGRAMMING GUIDE

Syntax: A = STR(7,$(put),$(get) position,len gth)

Description:
Extracts a portion of a string from $(get) and transfersit over to $(puz). The actual number of characters
mov ed isreturned. position starts at 1. When position is 0, no characters are placed into $(put) regardless of
length. When length is 0, all characters are copied from $(get) to $(put) starting at position.

Example: 10 STRING 200, 20
20 $(0) = "123456. 789"
30 A = STR(7,$(1),$(0), 3,5)
40 PRI NT $(1)
50 PRINT "Length:", A

run
3456.
Length: 5
Syntax: A = STR(8,%(search),$(substring))

Description:
Scans $(search) for occurrence of substring. Returns position where entiresubstring first matches search
string. ReturnsO when substring is not insearch string.

Example: 10 STRING 200, 20
20 $(0) = ">05M34C3"
30 $(1) = "0O5M
40 A = STR(8,%(0),$(1))
50 PRINT "Position natch at:",a
run
Position match at: 2

The number '0" in $(1) matches $(0) at position 2.

Syntax: A = STR(9,$(stringl),$(string?2))

Description:
Compares stringl to string2. Returns position of first mismatch. If both strings exactly match, then O is
returned.

Example: 10 STRI NG 200, 20
20 $(0) = ">05M34C3"
30 $(1) = ">05"
40 A = STR(9, $(0), $(1))
50 PRINT "M smatch starting at:",a
run
M smatch starting at: 4

Since the first three character positions matched, position 4 is returned as the longer string did not match the
shorter one.

String functions8 and 9 are useful in RS-485 network communication. In the above example, ">05" could be
the RPC-320's address. Knowing the mismatch starts at position 4, the address can be assumed correct. If the
mismatch started sooner, a smaller number is returned. Hence, the message was not intended for this
particular card and the entire message can be flushed.

2-105

RPBASIC-52 PROGRAMMING GUIDE

Syntax: A = ST R(10,%(n),format,variable)

Description:
Converts and formats variable into astring and putsit into $(n). Variable A returns irrelevant data.
Formatting is controlled by the format variable. Strings are formatted into one of 3 basic patterns, described
below.

format = 0. Default free format. When number is between +99999999 and +0.1, RPBASIC will save integers
and fractions. When numbers are outside this range, the FO format, described next, is used.

format = Fx. Floating point format. 'x' determines how many digits after the decimal point are saved. When
x = 0, the number of trailing digitswill vary and trailing O's are not saved. 'X'isrepresented as a hex number.
When format = OF3H, 3 decimal numbers are printed. An alternate way of setting floating point output is to
make format= the number of decimal numbers plus 240.

format = xyH. Force integer and/or fraction output. Command is same as USING(##.##), where 'x' is the
number digitsleft of the decimal point and y isto theright. Maximum value for xand y is 7. Use the hex
format to set the number.

Example: 10 String 200, 20

20 C = 23.45
30 F=0
40 A = STR(10,$(0),F C

50 PRI NT "Vari abl e val ue, before formatting:",C
60 PRINT "String in free format:", $(0)

70 F = OF2H

80 A = STR(10,$(0),F C)

90 PRI NT "Using floating point format:",$(0)
100 F=52H

110 A=STR(10, $(0),F, O

120 PRI NT "Usi ng ####. ## format:", $(0)

run

Vari abl e val ue, before formatting: 23.45
String in free format: 23.45

Using floating point format: 2.34 E+1

Usi ng #####. ## format: 23. 45

ERROR
BAD ARGUMENT When functionis out of range or string data is incorrect.

2-106

RPBASIC-52 PROGRAMMING GUIDE

STRING
Syntax: STRING total bytes,string length
Where: total bytes = total number of bytesin memory to allocate
string length = maximum number of bytesin a string
Function: Allocate memory for strings

Mode: Command, run

Use: STRING 56,10 : REM Allocate memory for 5 10-byte strings
Cards: All

DESCRIPTION

Prior to using strings, you must use STRING to allocate memory for them. The STRING argument values are
computed by this equation:

total bytes = ((string length + 1) * number_of_strings) +1

The only way to recover string memory iswith a"STRING 0,0" instruction. String memory is reclaimed and
then reallocated each time you use the STRING operator. Strings are terminated with a carriage return (ODH
or 13) which is the additional byte added to your bytes per string expr.

WARNING:

STRIN G causes RPB ASIC-52 to execute the equivalent of a CLEA R instruction since string and numeric
variables occupy the same memory space. In other words, the STRING instruction clears all variables,
interrupts and stacks. Allocae string memory early in your program and don't reallocate it unless you can
accept the loss of all variables.

RELATED
ASC, CHR, STR

ERRORS

MEMORY ALLOCATION Memory not allocated for strings

C-STACK STRING used in a subroutine, clearing the stack.
EXAMPLES

10 STRI NG 1000, 40
20 $(0) = "Up to 40 characters in this string"

100 $(2) = COMB(1)

2-107

RPBASIC-52 PROGRAMMING GUIDE

SQR
Syntax: SQR(expr)

Where: exprisany valid mathematical expression, number, or variable greater than 0
Function: Returns a positive square root.

Mode: Command, run
Use: PRINT SQR(A)
Cards: All
DESCRIPTION

expr must be positive. Any calculation is accurate to +5 least significant digits.

ERRORS
ARITH.UNDERFLOW expr or result isless than RPBASIC-52's smallest floating point value of + 1E-127
ARITH.OVERFLOW expror result isgreater than RPBASIC-52's largest floating point value of
+.99999999E+127
BAD ARGUMENT Attempt to take SQR() of a negative number

EXAMPLE

100 FORN =1 to 10

110 A=SQR(N)**2

120 IF (A-N)<>0 THEN PRINT A, N
130 NEXT

>run

. 0000001
. 9999999
. 0000001
. 0000002
. 9999999
. 9999998

~NOoO O OINN
O~NOUITWN

2-108

RPBASIC-52 PROGRAMMING GUIDE

ST@

Syntax: ST@ expr

Where: expr =0 to 65535

Function: Takes a floating-point number from the argument stack and stores it to data memory at the address.

Mode: Command, run

Use: PUSH B : ST@7EO00
Cards: All

DESCRIPTION

ST@ is used in conjunction with PUSH, POP, and LD@. Use these commands to save and retrieve floating
point numbers to program RAM.

NOTE: LD@ and ST@ cannot use extended RA M. Only segment 0 RAM (used for running Basic
programs) is used. Use PEEK and POKE com mands to access this memory.

WARNING: When 128K and 512K RAM are installed, all of memory is cleared on pow er up and reset.
Do not use LD@ or ST @ to save floating point numbers in segment 0. Use POKE and
PEEK type commands instead.

32K RAM sy stems hav e address 7TEOOH set as M TOP. Thislocation up to 7FFFH may be used to store
variables.

expristheaddressin RAM of where a number is stored.

Each floating-point number requires si x bytes of memory. exprinthe ST@ and LD@ instructionsspecify the
high address. A number is stored at locations expr through expr-6.

RELATED

LD@, PUSH, POP

ERROR

expr location should be above MTOP. Otherwise the data may be overwritten.

EXAMPLE

100 A=Al N(0) *. 234
110 PUSH A
120 ST@FOOH

300 LD@FOOH

310 POP B

320 PRI NT " Anal og val ue retrieved=",B
>run

Anal og value retrieved=",B

2-109

RPBASIC-52 PROGRAMMING GUIDE

TAB
Syntax: PRINT TAB ((position)
Where: position = 1 to 255
Function: Specifies a column number at to begin printing.

Mode: Command, run

Use: PRINT TAB(5), "Pressure", TAB (20)," Temperature"
Cards: All

DESCRIPTION

TAB isused with PRINT. Itisused to print datain table form. If the cursor is pastthe requested column, the
instruction is ignored.

ERROR
BAD ARGUMENT When position is negative or out of range.

EXAMPLE

100 PRI NT TAB(5),"Pressure", TAB(20), "Tenper ature"
110 FOR N=0 TO 6

120 PRINT TAB(7), AIN(0)*.237,

130 PRINT TAB(23), A N(1)*1.324

140 NEXT
>run
Pressure Tenper ature
116. 13 237.3
116. 14 237.3
116. 13 237. 4
116. 14 237. 4
116. 11 237.0
116. 16 237.6
116. 13 237.5

2-110

RPBASIC-52 PROGRAMMING GUIDE

TAN

Syntax: TAN((expr)

Function: Returns the trigonometric tangent (sin/cos) of expr which isassumed to be in radians. expr must be
in the range of +/- 200,000.

Mode: Command, run
Use: PRINT TAN(PI/4)
Cards: All
DESCRIPTION

SIN, COS, and TAN operators use a Taylor series to calculate thefunction. These operators first reduce the
argument to a value that isbetween 0 and PI1/2. the algorithm used to reduce the vadue will reduce accuracy
when value islarge To maintain accuracy, keep the arguments for trig functions as small as possible.

ERRORS
ARITH.UNDERFLOW value or result isless than RPBASIC-52's smallest floating-point value of + 1E-127
ARITH.OVERFLOW value or result isgreater than RPBASIC-52's |argest floating-point value of
+.9999999E+127
DIVIDE BY ZERO Attempt to take TAN(X) when COS(PI/2) = 0

EXAMPLES

100 PRI NT SIN(PI/2), COS(10001*Pl), TAN(5* Pl / 4)
110 PRI NT ATN(TAN(PI / 4))/ PI

>run

1 -1 1
. 24999996

2-111

RPBASIC-52 PROGRAMMING GUIDE

TICK
Syntax: TICK (timer)
Where: timer = 0to 3. It specifies the timer number.
Function: Returns a time from one of 4 process clocksin 5 msincrements.

Mode: Command,Run
Use: A =TICK(2)
Cards: All
DESCRIPTION

There are fourtick timers updated 200 times per second. Each timer is independent of each other in that they
may be read and cleared separately (see CLEAR TICK). All timers areupdated at the same time.

This function is separate from the real time clock and isnot battery backed. All timers reset to 0 on power up
or reset. Timers continue to run in command mode and cannot be turned off.

TICK(n) returns time in thousandthsof a second (in 5 msintervals) up to 65535.995 seconds, or
approximately 18.2 hours. The timer then starts at 0 again.

Tick timers are not affected by to the ONTICK instruction.

RELATED
CLEARTICK,ON TICK

ERRORS
BAD SYNTAX If any parameters left out
BAD ARGUMENT When timer > 3 or negative or left out

EXAMPLE
The following example clears tick timer number 3, delays for atime, then prints tick timers 0 and 3.

10 CLEAR TI CK(3)

20 FOR X = 0 TO 1000

30 NEXT

40 PRINT TI CK(0), TI CK(3)

124.6 .425

2-112

RPBASIC-52 PROGRAMMING GUIDE

TIME (function)
Syntax: A =TIME(n)
Where: n=0to 4

0 = hours

1 = minutes

2 = seconds

3 = hundredths of a second

4 = seconds since midnight
Function: Returns the hour, minute, second, or hundredths of a second from the real time clock
Mode: Command, Run
Use: A=TIM E(1) Returns minutes
Cards: All
DESCRIPTION

A DS1216DM must be installed in thedata RAM socket, usually U5. Refer to your hardware manual for
exact location. The numerical value of the hour, minute, or second is returned.

TIME(4) returns the seconds plus hundredths of a second since midnight. Thisis useful when time stamping
an event.

A HARDWA RE error is returned when the RTC module is missing or bad. Use ONERR to trap for this kind

of error.

RELATED

Error code is 50 at address 101H

TIME (command)

ERRORS
BAD ARGUMENT When #n out of range, negative
HARDWARE RTC module missing
EXAMPLE

The following program converts a TIME number into a string.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

STRI NG 200, 20

$(0) =" : : " : REM SETUP FOR HH: MM SS
HR = TI ME(0)

MN = TIME(1)

SC = TI ME(2)

T = HR/10 : REM use T for tenporaries
ASC($(0),1) = INT(T) .ORRBRBM 10's of hours

ASC($(0),2) = (T-INT(T))*10) .QRREMSL's
T = M\/10 :REM mnutes conversion
ASC($(0),4) = INT(T) .OR 48
ASC($(0),5) = ((T-INT(T)) * 10) .OR. 48
T = SC/10 :REM tenmp for seconds
ASC($(0),7) INT(T) .OR. 48

ASC($(0), 8) ((T-INT(T)) * 10) .OR. 48
PRI NT " Time:", $(0)

2-113

RPBASIC-52 PROGRAMMING GUIDE

TIME (command)
Syntax: TIME hours,minutes,seconds
Where: hours = 0to 23
minutes = 0 to 59
seconds = 0to 59
Function: Sets the time to the real time clock

M ode: Command, Run

Use: TIME 18,17,00 Sets time to 6:17:00 PM
Cards: All. Note consideration for RPC-320, RPC-330
DESCRIPTION

Time uses a 24 hour format. Hundredths of a second are set to 0 when TIME is executed.

The RPC-320 and RPC-330 use an optional DS1216DM clock module. This module is shipped with the
clock off to conserve battery power. To turn the clock on, execute the D ATE command first. Failureto do so
causes a HARD WA RE error. DA TE need only be done once to turn on the clock. Subsequent changes to
TIME can be performed without using DATE. Refer to your hardware manual for installation location.

RELATED
TIME (function), DATE (command)

ERRORS
BAD ARGUMENT When hours, minutes, or seconds is out of range
HARDWARE Clock module is missing or not turned on. Error code 50 at address 101H

2-114

RPBASIC-52 PROGRAMMING GUIDE

UI0

un
Syntax: Uln
Where: n =0 or 1, is the serial port number
Function: Directs serial input to COM 0 or COM 1 when using GET and INPU T statements.
Mode: Command, run
Use: ull
Cards: All

DESCRIPTION
UI0 and Ul1 canbe placed anywherein aprogram, allowing RPBA SIC-52 to accept input from either COMO
or COM1.

The original BASIC-52 required an assembly language routine to use another serial port. RPBASIC-52 has
done this already.

RELATED
GET, UOQO, UOL,INPUT

EXAMPLE
The following exam ple prints out and inputs data from COM 1.

100 U 1
110 UO 1
120 I NPUT "Enter name:", $(0)
130 UO O
140 U 0

2-115

RPBASIC-52 PROGRAMMING GUIDE

voo0

UO1
Syntax: UOn
Where: n =0 or 1, is the serial port number
Function: Directs PRINT output to COM 0 or COM 1 serial port.
Mode: Command, run
Use: uo1
Cards: All

DESCRIPTION
UOO0 and UO1 canbe placed anywherein aprogram, allowing RPBASIC-52 to accept print toeither COMO
or COM1.

The original BASIC-52 required an assembly language routine to use another serial port. RPBASIC-52 has
done this already.

RELATED
Ulo,Ull,INPUT

EXAMPLE
The following exam ple prints out and inputs data from COM 1.

100 U 1
110 UO 1
120 I NPUT "Enter name:", $(0)
130 UO O
140 U 0

2-116

RPBASIC-52 PROGRAMMING GUIDE

USING

U.
Syntax: PRINT USING (format)
PRIN T U.(formart)
Where: format
USING(Fn) nisthe number of significant digits. A minimum of 3 significant digits are
always printed. Maximum value of nis 8.

USING(#.#) The number of # symbols determines how many significant figures of the
output value will be displayed before and after the decimal point. The
maximum total number of "#" symbolsis 8. Integers (decimals truncated) are
printed when there are no "#' symbols after the decimal point or if no decimal
point is given. If a value cannot be printed in the requesed format, RPBASIC-
52 outputs a"?" and prints the value in USING (0) format.

USING(0) The default output format for RPBASIC-52 floating-point values. Digplayed
as adecimal integer and fraction if the value is betw een +/- 99999999 and +/-

0.1.

Function: Used with PRINT to format subsequent expressions.

Mode: Command, run

Use: PRINT USING(F3),A
Cards: All

DESCRIPTION

The same formatting capability is available using the ST R(10,...) function.
Formatting is "remembered" until it is reset or changed.
RELATED STR

ERRORS BAD SYNTAX - Missing # to the left of the decimal point or a space between USIN G and the left
parentheses.

EXAMPLE
110 PRI NT USI NG(F3), PI *100
>run

3.14 E+2

2-117

RPBASIC-52 PROGRAMMING GUIDE

WDOG
Syntax: WDOG [time]
Where: time=0, 1, or 2
no parameter = toggle watchdog timer
0 = turn off watch dog timer
1 = set timeout interval to 0.38 seconds
2 = set timeout interval to 2.8 seconds
Function: Resets or sets w atchdog timer.

Mode: Run

Use: WDOG

Cards: All. Cards use this command in differentways. Refer to your hardware manual to verify operation.
DESCRIPTION

The watchdog timer is a supervisory function for applications that cannot afford to " crash”.

WDOG 1 or WDOG 2 enables the watchdog and sets the interval. WDOG is executed periodically by your
program to prevent the card from resetting. WD OG 0 turns off the watchd og timer.

Different cards may use different time out periods. Refer to your hardw are manual.

RELATED
none

ERROR
BAD ARGUM ENT when timeis out of range

EXAMPLE

The following exam ple shows how ONTI CK can be used to reset thetimer. The watchdog timer is set for 2.8
seconds.

10 \ADOG 2
20 CLEAR TI CK(0)
30 ONTICK 2,200
40 GOTO 40

200 PRI NT TI CK(0)
210 WDOG

220 RETI

When awatchdog timeout occurs, only the CPU isreset. The effect isthe same as performing a hardware
reset, except a hardware reset pulseis not issued. Digital 1/0 at J3 does not change. Digital linesLO- L8 are
reset to power up conditions as is the display port.

2-118

RPBASIC-52 PROGRAMMING GUIDE

XBY
Syntax: XBY (addr)
XBY (addr)=expr
Where: addr = 0to 65535 (OFFFFH) is a memory address
expr = 0to 255 is data to save
Function: Read/write external data memory, segment 0 only.

M ode: Command, run

Use: XBY (99)=35

Cards: All

DESCRIPTION
XBY retrieves or assigns a value to external data memory. This command is equivalent to PEEKB and
POKEB.

RELATED

CBY, DBY, PEEKB, POKEB

ERROR
BAD ARGUMENT Invalid addr or atempt to assgnan out of range vdueto aXBY (expr).

EXAMPLE

100 XBY(47536) = XBY(47536) .OR. 3

2-119

RPBASIC-52 PROGRAMMING GUIDE

CONFIG COMMANDS
CONFIG commands configure various 1/0 to user defined parameters.

All CONFIG commands are unique to RPBASIC-52. Thereis no equivalent in the original version. Some
commands are not available for all cards.

CONFIG AIN

Syntax: CONFIG AIN channel, mode, range
Where: channel = 0to 7, analog input channel
mode = 0 or 1, differential or single - ended
range =0or 1, £2.5 or 0 to5 volt input
Function: Determines type of analog input for measurement

Mode: Command, Run

Use: CONFIG AIN 3,1,0

Cards: RPC-320, RPC-330 Refer to your hardware manual for applicability if your card is not listed here.
DESCRIPTION

All inputs are configured for single - ended, 0 to +5V inputs on power up. Inputs, or pairsof inputs, may be
changed to differential and/or £2.5 volt input.

Differential inputs use adjacent channels, as described in Chapter 10, Analog Input, Initialization. Inputs are
pseudo-differential, meaning the input signal is measured with respect to ground. See Chapter 10 for more
information.

mode of 1 specifies single ended w hile 0 means differential.

range = 0, a+2.5V input is chosen while a 1 sets 0 to +5 volt input.

Refer to Chapter 10, ANALOG INPUTS in your hardware manual for examples and configuration information.

ERROR
BAD ARGUMENT When any parameter is out of range.

2-120

RPBASIC-52 PROGRAMMING GUIDE

CONFIG BAUD

Syntax: CONFIG BAUD 0,baud
CONFIG BAUD 1,baud,rs-485
Where: baud = Baudrate number. See tables bd ow.
rs-485 = Parameters for RS-485 port. See table below.
Specify 0 or 1 for serial port.
Function: Set baud rates for COMO0 and COM 1.

Mode: Command, Run

Use: CONFIG BAUD 1,3,0FF

Cards: All. baud code will vary from card to card.
DESCRIPTION

Power up baud rate is 9600 for both ports. Serial param eters change immediately after thiscommand is
executed. Communication parameters are set at 8 data bits, 1 stop, no parity .

Use the table below for COMO0 and COM1 baud code on the RPC-320 and RPC-330:

baud code Baud rate baud code Baud rate
0 38400 (COMO0), 57600 (COM 1) 4 2400
1 19200 5 1200
2 9600 6 600
3 4800 7 300

Notice baud code 0 gives different rates for COMO and COM 1.

rs-485 configures COM1 for RS-232, RS-422, and 4 wire RS-485. Set jumper W4 as needed. Power up
default is 0, or RS-232 configuration.

rs-485 Configuration

0 RS-232
1 RS-422 (transmitter and receiver always on)
2 RS-485, 4 wire (Tx on during transmit, receiver always on)

ERROR
BAD ARGUMENT When any parameters are out of range.
BAD SYNTAX When any required parameters are missing.

2-121

RPBASIC-52 PROGRAMMING GUIDE

CONFIG DISPLAY

Syntax: CONFIG DISPLAY type

Where: type = 0 to 3, defines the display type

0 =LCD 4 x 40 character

1=LCD 4 x 20 character

2 = Vacuum florescent 4 x 20 character

3 = LCD - 5003 graphics display

4 = Vacuum florescent 4 x 20, |EEE Centry series
Function: Defines the display type used with DISPLAY and related commands.
Mode: Command, RUN
Use: CONFIG DISPLAY 1 Configures display portand operation for LCD 4 x 20.
Cards: All
DESCRIPTION

The display type must be set in order for the DISPLAY drivers to work properly.

Other kinds of LCD and Vacuum florescent diglays may also be used. However, certain options such as
character positioning may not work properly or at all.

RELATED

DISPLAY, CLEAR DISPLAY

ERROR

BAD ARGUMENT When type out of range.

2-122

RPBASIC-52 PROGRAMMING GUIDE

CONFIG FREQ
Syntax: CONFIG FREQ channel,interval
Where: channel = counter number, 0 or 1
interval = number of 5 milli-second periods between readings. Rangeis 1to 255. An
interval of O turns off this multitasking routine.
Function: Sets up multitasking to read a counter every interval. The counter is read using the FREQ command.
Mode: Command, Run

Use: CONFIG FREQ 0,100
Cards: RPC-210, RPC-320, RPC-330 (cards with LSI 7166 counter chip)
DESCRIPTION

Comm and sets up RPB ASIC operating system so FREQ function can operate. This command defines a
counter and time interval between counter reads.

Longer interval smooths out readings. Short intervals (interval between 1 and 10) are not recommended.

RELATED
FREQ

ERROR
BAD ARGUMENT channel > 0 or 1 (depending upon the card)
interval > 255

EXAMPLE
See the FREQ command for an example.

2-123

RPBASIC-52 PROGRAMMING GUIDE

CONFIG LINE
Syntax: CONFIG LINE O,configuration 0,port C
CONFIG LINE 100,configuration 1,port A,port B,port C
Where: configuration n = port configuration per tables below.
port A = Digital 1/0O port A output data
port B = Digital 1/O port B output data
port C = Digital 1/0 port C output data
Function: Configures digital I/O ports for inputs and outputs.

Mode: Command, Run
Use: CONFIG LINE 0,1,128

CONFIG LINE 100,3,255,0,240
Cards: All. Check line ranges for your card.
DESCRIPTION

Upon pow er up or reset, digital 1/0 port J3 (lines 100-123) are configured for inputs. Lines at P6 are
configured for inputs (L0-L3) and outputs (L4-7). OutputsL4 and L5 arelow and L6 and L7 are high. The
status of these lines is changed using this command.

There are two digital 1/O line number groups on the RPC-320. One group, 0-8, access lines at the terminal
strip on the card. Line number O is used to specify these lines. port C simply specifies which linesare high
and low.

The second digital group isspecified asline 100 and determines the configuration for digital 1/O port J3. An
82C55 is used to interface the 24 digital 1/0 lines. The 82C55 consists of 3 ports organized as follows:

Port A Eight lines that can be programmed as all inputs or all outputs.
Port B Eight lines that can be programmed as all inputs or all outputs.
Port C Eight lineswhich can be programmed in one group of eight linesor two groupsof four lines

as all inputs or all outputs.

The following table is used for the configuration 0 or I parameter. It determines w hich port, or part of a port,
is an input and output.

configuration 0 Lines 4-7 Lines 0-3 (Upper and lower Port C)
0 Output Output
1 Output I nput
2 Input Output
3 Input I nput

2-124

RPBASIC-52 PROGRAMMING GUIDE

configuration 1 Port A Port B Upper C Lower C
0 Output Output Output Output
1 Output Output Output Input
2 Output Input Output Output
3 Output Input Output Input
4 Output Output Input Output
5 Output Output Input Input
6 Output Input Input Output
7 Output Input Input Input
8 Input Output Output Output
9 Input Output Output Input
10 Input Input Output Output
11 Input Input Output Input
12 Input Output Input Output
13 Input Output Input Input
14 Input Input Input Output
15 Input Input Input Input

port 4, B, and C parameters set the output gatus. When a port is configured as an input, any value can be
used. When aport is configured as an output, the value may be determined by corresponding a bit output
with avalue.

Bit

7654
Status 0010

= 23H = 35 decimal

Lines 0, 1, and 5 will go high while the otherswill go low. In thisexample, port would equal 35 or 23H
(either one will work).

When J3 is connected to an opto rack, a'0' at abit position turns ON amodule while a'l' turnsit off.
(NOTE: The LINE command rev erses the meaning of '0' and '1' while LIN E # does not).

The value for an output at port C is computed in the same manner even if one half is an input.

The following example configures lines at J3 so port A and B are all outputs and port C is all inputs. With
the high current output installed at U12, lines 7 and 8 are 'ON' or low w hile the other high current outputs are
'OFF'. Line 19 will alsobe low. Lines at port C are pulled high or low according to jumper W7.

CONFI G LI NE 100, 5, 254, 130, 0

WARNING: When configuring lines for outputs using CONFIG L INE, lines will go low momentarily
(less than 10 micro-seconds) until they are set high again as per the data in the command
line.

Some other linesare affected when CONFIG LINE O is executed. These lines are card dependent. Refer
to the cards hardw are manual under DIGIT AL I/0 for more inform ation.

RELATED
LINE (both statement and function)

ERROR
BAD ARGUMENT configuration > 15 or negative
port > 255 or negative

2-125

RPBASIC-52 PROGRAMMING GUIDE

APPENDIX A - Network example program

File: NET3XX.BAS

rem RPC- 3xx net wor ki ng

rem Uses COML as network port

rem To use com port O and get going faster, REM out the following |lines:
rem 130, 150, 1510, 1530

rem Line 1510 rmust still exist, so rem AFTER the |ine number

rem Change the followng |ines

rem 160 for COM 0 instead of 1

rem 1000 change COMB(1) to COMS$(0)

rem | f your card does not have anal og output, comment out |ine 2560
rem command D assumes a display. Adjust the CONFI G DI SPLAY command
remat |ine 140

rem Demp programis limted to 5 commands. |f adding more, change
remlimt check in [ine 1210

rem Data packet to the card is:

rem <CR>>ncd...ds

rem Where
rem<CR> = carriage return character ODH

rem> = command signature
remn = card nunber. May be number 0-9 or letter
remc = command. May be nunber, letter, or combination

remd...d = data as required for command
rems optional checksumof string
rem a ?? means ignore checksum

rem Command types for this demo are:

rem A = set line 8. Data following Ais 0 or 1

rem Exanpl e: >00A0??

rem B = set anal og output channel, data

rem Exanpl e: >00B0437??

rem |[|- 1 to 4 digits of data

rem | - channel no 0 or 1

rem Shows how to convert a string number into one usable by
rem BASI C

remC = return position fromcounter 0 or 1
rem Exanpl e: >00C0??

rem || -counter #

rem | - command

rem Shows how to take a "real" nunber and convert it to a
rem string.

remD = Send message to display port
rem Exanpl e: >00DCheck station 5??

rem E = Power up acknowl edge. Used to inform host of reset condition
rem Exanpl e: >00E??

rem F = 1s everything OKor is there a problem

rem Exanmpl e: >00F??

rem Command F returns an An. If n = 0, everything OK

rem Error codes in STATUS are set somewhere else

rem Routi ne cl ears STATUS when poll ed

100 STRI NG 2000, 40 :REM al | ocate menory
120 $(0) = ">00" :REM assign card ID. It is nmodified at line 150
125 $(3) = ">99" :REM All units go into safety node

REM set up RS485 port on board for 19200
rem NOTE: this is board dependent. Check your cards manual to nake sure

RPBASIC-52 PROGRAMMING GUIDE

rem 130 CONFI G BAUD 1,1, 2
rem set the display type for command D
140 config display 1

rem Read lines 0-3 to determ ne card address.
rem Card nunmber starts from ASCII '0' and goes up fromthere.

rem 150 ASC($(0),3) = (lineb(5,2) .AND. 15)+48

REM decl are tasking and define conditions
REM To 1000 when either 40 characters are in or a <cr> received

rem 160 ON COM$1, 40, 13, 1000
160 on con®0, 40, 13, 1000

300 GOTO 300 : REM hang out here

REM Handl e interrupt here

REM Since all variables are global, |ocal variables used here start
REM with the letter 'o'. This helps prevent inadvertent val ue changes

REM t o other parts of the program

rem 1000 $(1) = COMSB(1) : REM get data
1000 $(1) = con(0)

rem Check for emergency safety node code
1005 if str(8,%$(1),%$(3)) = 1 then 5000

REM see if card IDis in this packet
REM If O returned, is not this card

1010 IF STR(8,$(1),$%$(0)) <> 1 THEN RETURN

REM Parse out command. For this deno, assume
REM it is only 1 letter long and starts with
REM capital letter A. |If command is negative
REM can return a NAK (negative acknow edge)
REM to sender or ignore it.

1020 OA = ASC($%$(1),4)-65
1030 IF OA < 0 then 1500

REM Make sure checksumis OK
REM Add up values in string for length - 2

1040 ocksum = 0

1050 ole = str(0,$%$(1))

1060 for oc = 1 to ole-2

1070 ocksum = asc($(1),oc) + cksum
1080 next

remstrip off excess
1090 ocksum = ocksum.and. OffH

REM Get checksum val ues
REM | F second to |l ast character is a ?, then don't check checksum
REM convert | ast two characters into decinal

1100 oc = asc($(1),ole-1): REM get first digit

1110 if oc = 63 then 1200:remif ?, skip rest of checksumtest
1120 gosub 1600 :rem convert ASCII| to nunmber

1130 och = oc*16 :REM assign high byte first

1140 oc = asc($(1),o0le) :remget last hex digit

1150 gosub 1600

1160 oc = oc+och :rem make checksum val ue

A-2

RPBASIC-52 PROGRAMMING GUIDE

remif last two digits don't sumto nmessage, then return a negative
rem acknowl edge error and bail out

1170 if oc <> ocksumthen $(2) = "N2" : goto 1510
rem Checksum i s good
REM I f status command, go process it

1200 I F oa

= 4 THEN 4000
1210 if oa > 5

then 15BEBM if not in command, is error

REM Check for valid power up acknow edge
REM i f not acknow edged, then state so

1220 if oflag = 0 then $(2) = "N3" : goto 1510

rem process conmmand

rem GOSUB's could al so be used here. However, goto's are faster as
remexiting the routine makes a direct branch to the condition

rem Cmdn letter A B C D E F

1240 on oa goto 2000,2500, 3000, 3500, 4000, 4500

rem|f more commands, check for limt. I f over, then subtract command
rem and make another ON GOTO

REM Common return point for successful conpletion of a command

REM Return acknow edge to sender.
REM Used for conmands

1400 $(2)="A"
1410 GOTO 1510 :REM to common output & exit

REM Ret urn negative acknow edge to sender.

REM N1 = unrecogni zed command

REM N2 = checksum bad

REM N3 = power up not acknow edged. Needs command 5.

REM N4 = bad data

REM N5 = something is wong. Can add error conditions as needed

1500 $(2)="N1"

1510 rem UO1

1520 PRINT $(2)

rem 1530 UOO :REM back to main port
1540 RETURN

REM convert ASCI| HEX number into a number 0 - 15

REM Enter with oc = ASCI| val ue of number (0-9 or A-F which is 48-
REM 58 or 65 to 70)

REM I f problem oc returns -1. |If OK, returns number 0 to 15

1600 if (oc < 48) .or. (oc > 70) then oc =-1 : return
1610 if oc > 58 then 1640

rem val ue between 0 and 9. Sinply subtract 48 and exit

1620 oc = oc-48
1630 return

rem Val ue should be between A-F

1640 if oc < 65 then oc = -1 : return
1650 oc = oc - 55

1660 return

REM Send back acknow edge

A-3

RPBASIC-52 PROGRAMMING GUIDE

1700 $(2) = "A"
1710 GOTO 1510
rem Bad data

1750 $(2) = "N4"
1760 goto 1510

REM set a |ine according to data
rem For this exanple, line 8 is assumed to be controlled

rem Get desired status. Position 5 in string is 1 or O
2000 oc = asc(%$(1),5) - 48
rem make sure data is 0 or 1

2010 if oc < 0 then 1750
2020 if oc > 1 then 1750

rem Set |ine according to input and send back acknow edge

2030 line 8,o0cC
2040 goto 1700

rem Command B
rem Set anal og out put
rem Command format: >XXBcdddd??

rem [1]]1]]-dddd = data 1 to 4 nunbers
rem | - channel no. 0 or 1
rem | - this command no

rem get the channel no.
2500 oc = asc($(1),5) - 48

rem Data starts at position 6 and could be 1-4 nunmbers |ong
rem Extract the last part of the string into $(4)

2510 od =str (0, $(1)) :rem get length of string
2520 od =str(7,%(4),%(1),6,0d-7) :remget only data

rem convert string number into usable nunber then output it
rem Check limts. |f out of range, then return error

2530 od = str(3,%$(4))

2540 if (od < 0) .or. (od > 4095) then 1750
2550 if (oc < 0) .or. (oc > 1) then 1750

2560 aot oc, od

2590 goto 1700

rem Command C

rem Return counter val ue

rem Command format: >xxCc??

rem | -counter number 0 or 1 (RPC-330)
rem (could be 4-11 al so)
rem change limt check in 3010 for your card
rem get the channel no.

3000 oc = asc(%$(1),5) - 48

3010 if (oc < 0) .or. (oc > 1) then 1750

3020 oc = count(oc)

rem convert number to a string and out put

A-4

RPBASIC-52 PROGRAMMING GUIDE

3030 oc = str (10, $(2),0, oc)

rem Force letter Ato first spot. This is a space as set by format above
3040 asc($(2),1) = 65

rem output string as it is

3050 goto 1510

rem Command D

rem Send string to display

rem Command format: >xxDCheck station 2??

rem NOTE: Position is set by another command (exercise left to
rem the student)

rem Extract the string to display

3500 oc
3510 oc

str(0,%$(1)) : remget length
str(7,%(4),%$(1),5, oc-6)

3520 display $(4)

3530 goto 1700

rem Set power up acknow edge flag (OFLAG)
4000 oflag = 1

4010 goto 1700

rem Command F

rem General status of card

rem Synt ax: >xxF??

rem Returns An

rem \Where n = code or codes of system 0 = all ok

rem variabl e STATUS is gl obal and indicates system status
4500 oc = str(10,$(2),0, status)

rem Force letter Ato first spot. This is a space as set by format above
4510 asc($(2),1) = 65

rem optionally clear STATUS fl ag

4520 status =0

rem output string as it is

4530 goto 1510

rem Emergency or safety shut down

rem Set |ines as appropriate here

rem Do not return an acknow edge as message applies to al
rem cards on network

5000 rem shut down code here

5200 return

A-5

RPBASIC-52 PROGRAMMING GUIDE

APPENDIX B - Modem example program

File: MODEM BAS

rem Modem conmuni cation program
rem Based around BASIC-52 software for RPG 320, 330

rem General operation.

rem This programis designed as a receiver. Dialing out from

rema mdemis sinply a matter of sending a ATDT <phone no>

rem command and respondi ng appropriately to whatever is dialing.

rem Addi tional cycles (explained |later) nust be added to handle this

rem Receiving is a matter of going through a series of steps, or
remcycles. The first cycle is to detect Ringing message. Then
rem Connect <baud>. After that, a password is entered.

rem Line 2300 sets the password. After 3 fails, it hangs up.

rem Commands are then processed. Processing is done as part of
remthe main | oop rather than in the interrupt.

rem Commands are processed at |line 2400. At this point the card
rem could be treated as a network, processing conmands. A nore
rem sophi sticated command handler is in the RS-485 demo program (Appendi x A)

Rem ONTI CK acts as a conmmunication timer. Should there be a
rem period of inactivity while the nodemis on line, it issues a
rem hang up command to the modem Tinmeout for this exanple is
rem 10 seconds. It is controlled by the variable CTIM

rem The programis designed so that on a communication problem

remit will hang up and reset the nodem The OK string fromthe
remnodemis treated as a "ready to receive" indication fromthe
rem nodem |If no OKis received, it will go through a hang-up-
remreset process every 10 seconds until it receives one.

rem The NOKFL variable is set to 1 if no &K message is received.
rem This is read by the main |l oop since what to do with an inoperative
rem nodem i s applicati on dependent.

rem|f a NO CARRI ER nessage is received fromthe modem after connecting,
remthe modem will be reset. |If you expect to ever send this string over,
rem nodi fy the program at |ines 1500+ else the modem will be reset.

rem Some mpdem messages such as NO DI ALTONE, BUSY, and NO ANSWER are not
rem processed since these are outgoing dependent. However, they can be
rem processed by adding CYCLEs.

rem To run this program "as is", you should have 2 PC s avail abl e.
rem This program has DEBUGgi ng print statements throughout.

rem They may be removed as required.

rem One is connected to the card, the other to a phone line through
rema modem Configure the nodem per the RPBASIC software manual .
rem Connect a mpdem to an RPC-320, 330,

rem or other software conpatible card (one that recogni zes ON CGOMS$)
remto COM 1. Don't forget to put a null nodem adapter between the
rem nodem and card. Connect a PC or other such device to COM O.
rem Downl oad this program

rem Connect the modemto a phone line. Run your other PC s nmpdem

rem program Run this programon the RPC card. You will see initialization
rem nmessages and status displayed. You should see RD and SD lights blinking
remon the external nodem \What you are looking for is

rem cycle = 0 atim=0

remon the bottom of the screen. Dial up the RPC card from the other PC.
rem You should see a progression of messages such as RI NG CONNECT

rem and the CYCLE count will increase. Pay attention to your dial up
rem PC. You should see a short sign on message and a pronpt for a

B-1

RPBASIC-52 PROGRAMMING GUIDE

rem
rem

rem
rem
rem
rem
rem
rem

rem
rem
rem

rem
rem
rem
rem
rem

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

rem
rem
rem
rem
rem
rem
rem
rem
rem

rem

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

password. Enter 'password'. Use |ower case. The password is
set at |ine 2300.

You are then pronpted for a command. Conmands for this denmo are
prefixed with '>03". The command is a nunmber following the '3".
To return the current anal og reading on channel 0, type '>030'

You will probably get O if there is no voltage on channel O.

To return the status at line 0, type '>031'. You will probably
get a 1. A '>032 will disconnect fromthe I|ine.

If you do nothing, the mpdem will reset by the time atim=29

as printed on the screen. \When that happens, the nodem di sconnects
and resets.

Ot her things to consider.

If you are going to be sending out data for |ong periods of tinme,

be sure to change the variable ctimor reset atim periodically.

This programis designed to hang up if there is inactivity for a period
of tinme. Default is 10 seconds.

CYCLE 4 is the hang up/reset nodem cycle. When something sets this cycle
in motion, nothing in this programcan get it out. CYCLE 4 starts by
assum ng that nothing is being transmtted out. |t does wait a period of
time to ensure the tinme dependent escape sequence gets recogni zed.

A potential problemis in downloading information. Running at 1200 baud,

characters are sent out at about 120 characters/second. |If you are sending
out lots of data, chances are the serial buffer in the card will get full.
At this baud rate, it will take about 2 seconds to enpty. If you go into
CYCLE 4 right after a data dunp, the escape sequence will not be recognized
i medi ately. Since CYCLE 4 keeps trying to reset the nodem it will
eventually reset it. In the nean time, you may get "strange" data on

the receiving end.

This program was noderately tested. It recovers from no connects,

di sconnects, and nodem power off/on conditions fairly well. Keep

in mnd each nodem tends to operate alittle differently and sone

adj ust ments m ght have to be nmade. The bi ggest problem we had was

in "dead" times. Manufactures claimthey need 1 second of dead tine
before sending the escape sequence, but we found one needed nore. Also
you may need to pause a little longer after getting the CONNECT message
before sending out a sign on nmessage.

We used USR, Practical Peripherals, and "no name" nodens.

variable definition
cycle = comunication cycle counter

ncycl = main loop nulti tasking cycle
flag(n) = main task dispatcher flag

atim = actual tinme since |last communication (in seconds)
ctim= commanded tine for tinmout

htim = hang up/reset timer

$(0) = input string fromcom 1 buffer

$(1) = working search string in com11 interrupt routine
$(2) = NO CARRI ER string constant

cia = Communication Interrupt variable A - working variable

passw = pass word tries

okflg = flag to indicate OK was recei ved 1 = got it

nokfl = flag to indicate OK was NOT received 1 = not got it
The main | oop | ooks at nokfl and resets it. Reason being is

modem may be bad, not powered, or not connected.

remApplication requirements dictate what to do in case of a bad

rem
rem
rem
rem

rem

modem This flag is reset by the main loop. This program
is set up to continuously try to reset the nodem

nocfg = no carrier flag 1 = "NO CARRIER" string found
Variable root ti mwas used because tinme is a key word.

initialize strings, arrays, interrupts

10 config baud 1,5,0 :rem 1200 baud for this exanple

B-2

RPBASIC-52 PROGRAMMING GUIDE

20 string 1000,50: rem 20 strings, 50 bytes

30 dimflag(15) :remflags for main task di spatcher

40 okflg =0 :rem OK received flag

50 ontick 1,1000 :rem communi cati on wat chdog and system ti mer
60 on conf 1,49,13,2000 :reminterrupt on 49 chars or <cr>

70 ctim= 10 :rem communi cation timeout if on line

80 $(2) = "NO CARRIER' :rem string constant

90 nocfg =0 :remno carrier flag

100 htim= 0

110 clear com(1l) :remget rid of any previous stuff

rem Send reset to nmodem

rem NOTE: If you are allowing for downloads to the card

rem skip around line 150. This can be done by

rem checking for a flag set in expanded menmory (segment 1)
rem If it is set, then don't do card reset

150 cycle = 4 :rem do modem reset

rem other initialization as needed by the program

rem Main program | oop

rem This is a nulti-tasker dispatcher. It perforns various tasks

rem
rem

rem

rem
rem
rem
rem
rem

200
210
220

rem
230
240
rem
250
260
rem
300
rem
400
rem
500
rem
rem
rem
rem
rem
rem
rem
rem

rem
rem

as dictated by other interrupts or prograns

the array FLAG is used to indicate a process should be perforned
For this exanple

flag(0) = send back anal og i nput channel O val ue

flag(l) = send back digital 0 value

flag(2) = hang up

flag(3) through flag(14) are used for other process functions

for this exanple, only the first 11 flags are processed

for ncycl = 0 to 14
if flag(nmcycl) = 0 then 308m when a 1, then do a process

if mcycl > 5 then 250

mcycl = 0 1 2 3 4 5
on ncycl gosub 10000, 11000, 12000, 13000, 14000, 15000
goto 300

nmcycl = 6 7 8 9 10
on ncycl-6 gosub 16000, 17000, 18000, 19000, 20000
goto 300
do ncycl 11-14 or nmore here
next
DEBUG
print "cycle =",cycle," atim=",atimecr,

if there are other tasks that have to be done, then do themhere
goto 200

ONTI CK processing
Communi cation tineouts checked
if on line, some communi cation nust be received in 10 seconds
Exception processing is: Hang up (waits 3 seconds)
Long data send (ctim set |onger)

If you need to do other things, then add them as needed

Gosub to routine based on current cycle
Cycl es are:

0 waiting for RNG 1400

1 | ooki ng for QGONNECT 1500

B-3

RPBASIC-52 PROGRAMMING GUIDE

rem 2 = | ooking for password. |If ok send log on. |If not, tell user 1500
rem 3 = | ooking for command. |f ok, set MCYCLE. |If not, tell user 1500
rem 4 = Send esc, look for OK, send hang up, |ook for OK, send reset

rem l ook for OK 1600
rem5 Send out sign on message after a few seconds del ay

rem cycle = 0 1 2 3 4 5 6 7
1000 on cycle gosub 1400, 1500, 1500, 1500, 1600, 1900

rem ot her ONTICK st uff
1390 reti

remcycle 0 waiting for ringing
rem This is idle. No checking is done

1400 return
rem Cycle 1, 2, or 3

rem Looki ng for CONNECT, password, or command.
rem Look for NO CARRIER flag. |If set, then reset modem
rem Check 10 second counter atim and conpare with ctim

1500 atim = atimtl :remthe '1' is changed based on current ON TICK time
1510 if nocfg = 1 then 1550 : remif no carrier, reset all
1520 if atim < ctimthen return

rem no communi cation received Hang up and reset nodem
rem DEBUG

1540 print : print "no CONNECT, password, or command in time"

1550 cycle = 4
1560 htim= 0
1570 nocfg = 0
1590 return

rem cycle 4

rem Wait 2 seconds, send esc, |ook for OK, send hang up
rem |l ook for OK

rem ATI M value is used to determ ne what part of cycle
rem 2 seconds are allowed for each step

remfirst wait htine0

rem send esc htim= 2

rem | ook for OK, send hangup htim 5

rem | ook for OK, send reset htim= 8

remlook for OK. got into cycle O htim= 11

1600 htim= htim+ 1

1610 if htim= 2 then 1650
1620 if htim= 5 then 1700
1630 if htim= 8 then 1750

1635 if htim= 11 then 1850
1640 if htim> 12 then htim= 0 : return :remif really large, then reset
1645 return : remif none of the above

rem send out escape sequence. Look for OK

1650 uo 1

1660 print "+++",

1670 uo O

1680 okflg = 0 : remreset flag
rem DEBUG

B-4

RPBASIC-52 PROGRAMMING GUIDE

1685 print : print "Sent +++"
1690 return

rem |l ook for OK

rem I f have it, send hang up

remIf not, set flag (nokfl) and continue as mpdem coul d have
rem been hung up on and | ost carrier

rem Send out hang up command any way

1700 uo 1

1710 print "ATHO"

1720 uo O

1730 nokfl = not(okflg).and.1 : okflg =0
rem DEBUG

1735 print : print "Sent ATHO. "
1740 return
rem Look for OK (nust have it). |If not there, reset htim0

rem nokfl set to alert system and redo cycle
rem Send out reset string to nmodem This is a sinmple one

1750 if okflg = 0 then htim = 0:nokfl = 1. return
1760 uo 1

1770 print "ATZ"

1780 uo O

1790 okflg = 0

rem DEBUG

1795 print : print "Sent ATZ"

1800 return

rem Look for OK (nust have this one also). |If not there, reset
rem htim =0 and redo cycle

remclear COM 1) to flush out any other erroneous data
1850 cl ear com(1)

1860 if okflg = 1 then cycle = 0 : return

1870 htim=0

1890 return

rem Cycle 5 tick processing
rem Send out sign on message after 3 seconds of waiting

1900 htim= htim+ 1
1910 if htim< 3 then return

rem print sign on message and request password
1920 uo 1

1930 print "Renmote Processing mpdem demo"

1940 print "Enter password..."

1950 uo O

rem DEBUG

1955 print : print "Printed RPC sign on nessage"
1960 clear com(1)

1970 cycle = 2

1980 atim= 0
1990 return

B-5

RPBASIC-52 PROGRAMMING GUIDE

rem ON COM$ processing

rem get current input

2000 $(0)
2010 atim

com(1)
0 : remif anything cane in, reset actual comtinme

remignore any <cr><|f>_ Check for If

2020 if str(0,%$(0)) =0 then return

remif first character is If, then filter it out

2030 if asc($(0),1) < 10 then 2060

2040 cia = str(7,%$(0),%$(0),2,str(0,%$(0))-1) :remget rid of <If>
2050 goto 2020:rem check for any length of string

rem DEBUG

2060 print : print "Received string:",$(0)," Cycle=",cycle

rem Check for NO CARR ER string. |If there, then set flag and
rem continue. Other parts of program may use flag

2070 cia = str(8,%$(0), $(2))
2075 if cia > 0 then nocfg =1

rem process according to current cycle
rem CYCLE is defined as follows:
remO = waiting for RNG

rem 1l = | ooking for CONNECT

rem 2 = |looking for password. |If ok send log on. |[If not, tell user
rem 3 = | ooking for command. |f ok, set MCYCLE. |If not, tell user
rem 4 = Send esc, look for OK, send hang up, |ook for OK, send reset,
rem l ook for OK This routine just |ooks for OK

rem5 = send out sign on nessage after 2 second delay for CONNECT
rem cycle = 0 1 2 3 4 5 6

2080 on cycle gosub 2100, 2200, 2300, 2400, 2500, 2600

2090 return

rem check if RING message. |If so, then set cycle for 1
2100 $(1) = "RING'

2120 cia = str(8,$(0),$(1))

2130 if cia = 0 thenreturn :remif something else, just ignore it
2140 cycle =1

rem DEBUG

2150 print "Got RING To cycle 1"

2190 return

rem cycle =1

rem check for CONNECT nessage

remif not, hang up by setting cycle 4

remif CONNECT, then wait before sending sign on

2200 $(1) " CONNECT"

2210 htim=0

2220 cia = str(8,%$(0), $(1))
2230 if cia > 0 then 2270

B-6

RPBASIC-52 PROGRAMMING GUIDE

2240 cycle =4

rem DEBUG

2255 print "No CONNECT received. Input string=",$(0)

2260 return

rem hold off any xm ssion for 3 seconds before sending sign on

2270 cycle =5
2280 passw = 0

2290 return

rem cycle 2

rem Looki ng for password
remIf tried 3 tinmes, hang up

2300 $(1) = "password

2310 cia = str(8,%$(0), $(1))

2320 if cia > 0 then 2350

2330 passw = passw + 1

2335 uo 1 : print "lnvalid password. Re-enter" : uo O
2340 if passw = 3 then cycle = 4 : htim=0 : passw =0
2345 return

rem check on length to make sure its all correct

2350 if str(0,%$(0)) < str(0,%$(1)) then 2330

rem successful log in. Tell user to put in valid command
2360 cycle = 3

2370 uo 1

2380 print "Password accepted. Enter conmand"

2390 uo O

2395 return

rem Cycle 3

rem Process a conmand. |f valid, set flag(n)

rem To make sure no erroneous data | ooks |like a command, all commands are

rem prefixed with ">03". Idea is the likely hood of 4 random characters
rem making a valid command is unlikely conpared to just 1

2400 $(1) = ">03"

2410 if str(8,%$(0),$(1)) <> 0 then 2450

2420 uo 1 : print "lnvalid command. Re-enter”
2430 uo O

2440 return

rem command i s nunber in 4th position
rem Line 2460 checks for valid command |limt

2450 cia = asc($(0),4)-48
2460 if (cia < 0) .or.(cia > 2) then goto 2420
2470 flag(cia) =1 : remindicate do this

2490 return

B-7

RPBASIC-52 PROGRAMMING GUIDE

rem cycle 4

rem Look for OK
rem | f have OK, then reset cycle to O
rem | f nmessage is not OK, sinply |eave

2500 $(1) = "OK"
2510 if str(8,%(0),$(1)) <> 1 then return

rem got OK
rem Signal systemand let tick timer do next

2520 okflg = 1

2590 return

rem cycle 5
rem send out sign on message after 1 second del ay
rem Cl ear out COMif got here

2600 clear com(1)
2610 return

rem ncycl O processing frommin |oop
rem send back anal og channel 0 to nodem

10000 uo 1

10010 print ain(0)
10020 uo O

10030 flag(0) =0
10090 return

rem ncycl 1 processing
rem Send back digital status fromline O

11000 uo 1

11010 print line(0)
11020 uo O

11030 flag(l) =0
11090 return

rem ncycl 2 processing
rem hang up

12000 htim= 0

12010 cycle = 4

12020 flag(2) =0

12030 uol

12040 print:print "Hanging up"
12050 uo O

12090 return

B-8

RPBASIC-52 PROGRAMMING GUIDE

APPENDIX C- ERROR MESSAGES

The RPB ASIC-52 error processor helps identify errors.

When running a program, error messages are expressed as:

ERROR: XXX - | N LI NE NNN

NNN | nstruction

where XXX isthetype of error and NNN is the program line number where the error occurred. The " X"
identifies the very approximate location of the error. For example, aBAD ARGUMENT error occurring at line
100 is expressed as:

ERROR: BAD ARGUMENT - I N LINE 100
100 DBY(257)=5

In Command mode, only the error type isprinted snce thereare no linenumbers in Command mode.
RPBASIC-52 errors include:

A-STACK
ARITH.UNDERFLOW
ARITH. OVERFLOW
ARRAY SIZE

BAD ARGUMENT
BAD SYNTAX
C-STACK

CAN'T CONTINUE
DIVIDE BY ZERO
[-STACK

MEMORY ALLOCATION
NO DATA
HARDWARE

A-STACK

The argument stack pointer is out of bounds. Too many expressions were pushed or tried to pop non-existent data
off the stack.

ARITH. UNDERFLOW

The result of an arithmetic operation is beyond the lower limit of RPB ASIC-52 floating-point num bers.
RPBASIC-52's smallest floating-point number is +1E-127. An operation such as1E-100/1E28 would cause an
ARITH. UNDERFLOW error.

This exam ple produces a correct result:
>?1e-100/1e26
1.0 E-126

RPBASIC-52 PROGRAMMING GUIDE

This example produces an expected error:

?l e-100/1e28
ERROR: ARI TH. UNDERFLOW
READY

This example produces an incorrect exponent:

>?|e-100/.9e28
1.1111111 E-O

ARITH. OVERFLOW
The result of an arithmetic operation exceeds the upper limit of RPBASIC-52 floating-point numbers RPBASIC-

52's largest floating-point numberis £ .99999999E+127. An operation such as1E100* 1E28 causesan ARITH.
OVERFLOW error.

ARRAY SIZE

An array was accessed that is outside the dimension boundaries defined by a DIM instruction. For example:

DI M A(100)
PRI NT A(102)

ERROR: ARRAY SI ZE
READY

BAD ARGUMENT

The argument of an operator is out of limits. For example, A=AIN(300) generatesa BAD ARGU MENT error
since the value assigned by the AIN operator is limited to the range O to 7.

BAD SYNTAX

Aninvalid command, instruction, or operator or have attempted to use areserved key word as part of avariable
was entered. Thisisageneric"| don't know w hat thisis" responce by a computer.

C-STACK
More control stack memory was used than it has avalable. The control stack has of 158 byte of memory. A FOR-
NEXT loop uses 17 bytes, and DO-UNT IL, DO-WHILE, and GOSUB each use three bytes. This means you

limitedto nine FOR-NEXT loops Executing areturn beforea GOSUB, or aWHILE or UNTIL beforeaDO
instruction, or aNEXT before a FOR also generates a C-STA CK error.

CAN'T CONTINUE

A program was edited after stopping.

DIVIDE BY ZERO

A number was divided by zero or a statement such as TAN (P1/2).

RPBASIC-52 PROGRAMMING GUIDE

I-STACK

There is not enough internal stack gpace to evaluate an expression. Usually this iscaused by an excessive number
of parentheses.

MEMORY ALLOCATION
Accessing astring thatisoutside the defined gring limitsor assign MTOP avalue that does not contain any RAM.
NO DATA

A READ instruction does not have valid associated DATA instruction. NO DATA - IN LINE XXX error message
displays aline number where it expected to find the data.

C-3

RPBASIC-52 PROGRAMMING GUIDE

APPENDIX D - Data storage

STRING STORAGE

BASIC-52 stores string variablesbetween MTOP and top of variable space, call VARTOP. String $(0) would be
stored from VARTOP to [VARTOP + (bytes per_string + 1)]. String $(1) is gored from [VARTOP +
(bytes_per_string + 2)] to [VARTOP +2 * (bytes_per_string + 1)], and so on.

All strings are terminated with a carriage return (ODH, 13 decimal).

VARIABLE STORAGE

Scaler variables are numbersnot in a dimension. Dimensioned or arrayed variables(commonly referred to as
"arrays") are those whose identifier includes a single-dimensioned expression.

Scaler variables: PART,Al1,B
Dimensioned variables: TEMP(5), PRESS(A)

Scalars arestored starting at VARTOP-1, with gorage growing down at eight bytes per variable.

FLOATING-POINT FORMAT

RPB ASIC-52 stores all floating-point numbers in a normalized packed binary-coded decimal (BCD) format. All
numbers are normalized, so the most significant digit in a floating-point number isnever zero unless its actual
valueis zero.

To demonstrate the floating-point format, see how RPBASIC-52 stores 12345678.

LOCATION VALUE DESCRIPTION

X 88H exponent: 81H = 10%, 80H = 10° 7FH = 107, etc.
Zero isrepresented by a zero exponent

X-1 O00H sign bit: OOH = positive, 01H = negative
Other bits are temporary valuesused only during calculations

X-2 78H least significant two digits
X-3 56H next least significant two digits
X-4 34H next most significant two digits
X-5 12H most significant two digits

So we have .12345678 X 108 which is 12345678.

The POKEF command stores numbersin RAM in this same format. PEEKF expects to read a number in this
format.

D-1

RPBASIC-52 PROGRAMMING GUIDE

APPENDIX E - Software revision history

:'V1.02 added

; 24 key keypad scanning

; Took out BELL when backspacing beyond beginning of line

; Took out extra CRLF when entering in just a CR for a command.

:'V1.03 added
; CARD function
; CONFIG LINE 100 only now re-initializes port without writing to serial EEPROM .

;V1.04 Changed
; Release for RPC-320

:V1.05 Fixed
; BSA VE returned a hardware error when verify was bad. In fact,
; save was ok. Caused by RAM and EPROM pointers getting swapped

:V1.06 Fixed
; LCD graphics hardware CS and reset are reversed in RPC-320. Compensated
; in software.

:V1.07 Fixed

; MTOP was uselessin any system, especially a32K RAM.

; In 32K RAM system, MTOP = 7D FF. This will give user 512

; bytes of free RAM. 128K and 512K RAM versions not affected.
; STR(6,...) broken. Was not popping stack.

;V1.08 Fix

; Variables E and F would get dropped if followed by a space

; Changed token table in MAIN1 and 320_MA20 to add bogus token

; and command name.

; Added delays (nop's) between data strobe writes to LCD display to compensate for faster CPU
; Changed both LCD4x40 and LCD4x20 assembly files

:V1.09 Fix
; STR(7, ...) did not put in a CR into the put string, causing
; longer stringsto be printed.

:'V1.10 Initial release for RPC-330
; Added (330 only)
AOT command
; COUNT functionand command for added counter
; added ON COM, ON COUNT, ON LINE, ON KEYPAD for RPC-320, RPC-330

V111 11/29/95
Added day of week to DATE command and function

V1.12 12/01/95
Added code to use A tmel 29C040A type flash

E-1

RPBASIC-52 PROGRAMMING GUIDE

V1.13 01/12/96
Added code to support |EE centry series display (3602-100-05420)
Includes CONFIG DISPLAY 4
Added PRINT #port

V1.14 03/28/96
Fixed bug in ON COUNT. Returns error for lines > 100

V1.15 06/26/96
PEEK $ could cause basic to lock up under right conditions.

V1.16 02/18/97
ON LINE OFF could cause program to lock upif running ON COM.
Syntax error when DISPLAY used with IF-THEN-EL SE.
Added PEEKF and POKEF commands.

V1.17 04/16/97
Fixed keypad debounce. Speed up by about 1%.

V1.18 08/05/97
PRINT sends a CRLF sequence seemingly at random when printing from both ports and trying to print a
variable.

V1.19 12/01/98
Added FREQ and CONFIG FREQ.

V1.20 08/18/99
Pointer to baud rate table not getting set properly

V1.21 11/25/00
Added SPI in and out commands

E-2

